A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Structure
2.2. Mie Theory
3. Results and Discussion
3.1. Influence of GaAs LNWA on the Absorption of InAs LNWA
3.2. Influence of InAs LNWA on the Absorption of GaAs LNWA
3.3. Photoelectric Joint Simulation of the Integrated Device
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, S.; Li, B.; Chen, T.; Tu, Y.; Ji, H.; Othman, D.M.; Xiao, M.; Liu, R.; Zhang, Z.; Tang, Y.; et al. High responsivity colloidal quantum dots phototransistors for low-dose near-infrared photodetection and image communication. Light Sci. Appl. 2025, 14, 201. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Li, Y.; Chu, M.; Yuan, X.; Zhang, Y.; Zhang, J.; Zhang, X. Inverse-designed multi-diameter InAs nanowire array ultra-broadband photodetectors enhanced by localized surface plasmon resonances. Opt. Express 2024, 32, 30256–30266. [Google Scholar] [CrossRef]
- Min, L.; Sun, H.; Guo, L.; Wang, M.; Cao, F.; Zhong, J.; Li, L. Frequency-selective perovskite photodetector for anti-interference optical communications. Nat. Commun. 2024, 15, 2066. [Google Scholar] [CrossRef]
- Li, K.; Zhang, X.; Hu, L.; Su, D.; Liu, Z.; Jin, N.; Yang, Z.; Li, X.; Bi, X.; Wu, J.; et al. Wavelength-Controlled Triple-Mode Photoconductance-Polarity-Switching Field Effect Transistor for Secure Time-Variable Encrypted Optical Communication. ACS Nano 2025, 19, 18607–18619. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Hsiao, F.; Lin, Y.; Lin, C.; Shen, Y.; Hsu, Y.; Lee, P.; Su, Y.; Lu, H.; Lin, C.; et al. Highly efficient ternary near-infrared organic photodetectors for biometric monitoring. ACS Appl. Mater. Interfaces 2023, 15, 10907–10917. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Trendafilov, S.; Zhang, F.; Allen, M.S.; Allen, J.W.; Dev, S.U.; Pan, W.; Yu, Y.; Gao, Q.; Yuan, X.; et al. Broadband GaAsSb Nanowire Array Photodetectors for Filter-Free Multispectral Imaging. Nano Lett. 2021, 21, 7388–7395. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ling, C.; Xue, X.; Ji, H.; Rong, C.; Xue, Q.; Zhou, P.; Wang, C.; Lu, H.; Liu, W. Self-Powered and Broadband Photodetectors Based on High-performance Mixed Dimensional Sb2O3/PdTe2/Si Heterojunction for Multiplex Environmental Monitoring. Small 2024, 20, 2310107. [Google Scholar] [CrossRef]
- Shim, J.; Lim, J.; Kim, I.; Jeong, J.; Kim, B.H.; Kim, S.K.; Geum, D.; Kim, S. Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications. Light Sci. Appl. 2025, 14, 125. [Google Scholar] [CrossRef]
- Melchor, K.D.C.; Gómez-Aguilar, R.; López, J.O. Organic photodetectors for use in medical sensors, blood oxygen recognition, and temperature measurement. MRS Adv. 2024, 9, 295–300. [Google Scholar] [CrossRef]
- Xie, B.; Xie, R.; Zhang, K.; Yin, Q.; Hu, Z.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871. [Google Scholar] [CrossRef]
- Wang, M.; Zhuang, X.; Liu, F.; Chen, Y.; Sa, Z.; Yin, Y.; Lv, Z.; Wei, H.; Song, K.; Cao, B.; et al. New Approach to Low-Power-Consumption, High-Performance Photodetectors Enabled by Nanowire Source-Gated Transistors. Nano Lett. 2022, 22, 9707–9713. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, M.; Qi, L.; Zhang, N.; Wang, B.; Sun, X.; Zhang, R.; Li, D.; Li, S. Versatile on-chip polarization-sensitive detection system for optical communication and artificial vision. Light Sci. Appl. 2025, 14, 68. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, P.; Jiang, Y.-L.; Liu, F.Y.; Wan, J. A Novel Low Power Photodetector Using SOI/Bulk Hybrid Technology With High Responsivity and Detectivity Optimization Capability. IEEE Electron Device Lett. 2024, 45, 124–127. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Chen, L.; Li, L. Self-Powered Nanoscale Photodetectors. Small 2017, 13, 1701848. [Google Scholar] [CrossRef]
- Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2020, 8, 1900765. [Google Scholar] [CrossRef]
- Meng, J.; Li, Q.; Huang, J.; Pan, C.; Li, Z. Self-powered photodetector for ultralow power density UV sensing. Nano Today 2022, 43, 101399. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, P.; Wu, Q.; Jun, X.; Peng, R.; Huang, W.; Chen, S.; Wu, Z.; Li, C. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation. Adv. Electron. Mater. 2021, 7, 2001138. [Google Scholar] [CrossRef]
- Anilkumar, V.; Mahapatra, A.; Nawrocki, J.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Metal-doped MAPbBr3 single crystal p-n junction photodiode for self-powered photodetection. Adv. Opt. Mater. 2024, 12, 2302032. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Huang, Z.; Qiao, H.; Duan, C.; Ren, X.; Wang, Z.; Zhong, J.; Qi, X. Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: With novel structures for portability and flexibility. Mater. Today Nano 2021, 14, 100109. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, X.; Zhang, X.; Ren, X. A monolayer graphene/GaAs nanowire array Schottky junction self-powered photodetector. Appl. Phys. Lett. 2016, 109, 183101. [Google Scholar] [CrossRef]
- Bie, Y.; Liao, Z.; Zhang, H.; Li, G.; Ye, Y.; Zhou, Y.; Xu, J.; Qin, Z.; Dai, L.; Yu, D. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef]
- Mahapatra, A.; Ajimsha, R.S.; Misra, P. Self-powered high responsivity ultraviolet radiation sensor by coupling ZnO based piezoelectric nanogenerator and photodetector. Appl. Phys. Lett. 2024, 124, 103503. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Li, Z.; Yang, Z.; Wang, X.; Wang, Z.L. Self-powered ultrasensitive Nanowire photodetector driven by a hybridized microbial fuel cell. Angew. Chem. Int. Ed. 2012, 51, 6443–6446. [Google Scholar] [CrossRef]
- Young, S.-J.; Yuan, K.-W. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell. J. Electrochem. Soc. 2019, 166, B1034. [Google Scholar] [CrossRef]
- Juan, Y.M.; Chang, S.J.; Hsueh, H.T.; Chen, T.C.; Huang, S.W.; Lee, Y.H.; Hsueh, T.J.; Wu, C.L. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sensor. Actuat. B-Chem. 2015, 219, 43–49. [Google Scholar] [CrossRef]
- Hou, J.L.; Chang, S.J.; Wu, C.H.; Hsueh, T.J. Self-powered ZnO nanowire UV photodetector integrated with GaInP/GaAs/Ge solar cell. IEEE Electron Device Lett. 2013, 34, 1023–1025. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Li, Y.; Yuan, X.; Zhang, Y.; Zhang, J.; Zhang, X. Metal-mesh-integrated lateral nanowire array solar cells for ultra-thin photovoltaic antennas. Opt. Express 2024, 32, 37434–37445. [Google Scholar] [CrossRef] [PubMed]
- Levinshtein, M.; Rumyantsev, S.; Shur, M. Handbook Series on Semiconductor Parameters, Ternary, and Quaternary III-V Compounds; World Scientific: Singapore, 1999. [Google Scholar]
- Daniel, F.; David, N.; Ivan, O.; Angelo, G. Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range. In Proceedings of the SPIE, Optical Micro- and Nanometrology VI, Brussels, Belgium, 26 April 2016. [Google Scholar]
- Adachi, S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 1989, 66, 6030–6040. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Cuche, A.; Arbouet, A.; Girard, C.; Francs, G.C.d.; Lecestre, A.; Larrieu, G.; Fournel, F.; Larrey, V.; Baron, T.; et al. Strongly Directional Scattering from Dielectric Nanowires. ACS Photonics 2017, 4, 2036–2046. [Google Scholar] [CrossRef]
- Brönstrup, G.; Jahr, N.; Leiterer, C.; Csáki, A.; Fritzsche, W.; Christiansen, S. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 2010, 4, 7113–7122. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: Berlin, Germany, 1998. [Google Scholar]
- Dingemans, G.; van Helvoirt, C.A.A.; Pierreux, D.; Keuning, W.; Kessels, W.M.M. Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties. J. Electrochem. Soc. 2012, 159, H277–H285. [Google Scholar] [CrossRef]
- Cao, L.; White, J.S.; Park, J.S.; Schuller, J.A.; Clemens, B.M.; Brongersma, M.L. Engineering light absorption in semiconductor nanowire devices nanowire devices. Nat. Mater. 2009, 8, 643–647. [Google Scholar] [CrossRef] [PubMed]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, K.; Yan, X.; Li, Y.; Zhang, X. A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays. Sensors 2025, 25, 7308. https://doi.org/10.3390/s25237308
Jin K, Yan X, Li Y, Zhang X. A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays. Sensors. 2025; 25(23):7308. https://doi.org/10.3390/s25237308
Chicago/Turabian StyleJin, Ke, Xin Yan, Yao Li, and Xia Zhang. 2025. "A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays" Sensors 25, no. 23: 7308. https://doi.org/10.3390/s25237308
APA StyleJin, K., Yan, X., Li, Y., & Zhang, X. (2025). A Photovoltaic-Integrated Broadband Photodetector Based on Vertically-Stacked Lateral-Aligned Nanowire Arrays. Sensors, 25(23), 7308. https://doi.org/10.3390/s25237308

