Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection
Abstract
1. Introduction
- We propose a novel Interband Consistency-Constrained Structural Subspace Clustering (ICC-SSC) method for band selection, replacing the conventional norm with the norm in the self-representation model. This enforces structured sparsity in the coefficient matrix, ensuring that bands within the same subspace share a common set of basis bands for linear representation. The structural constraint enhances intra-subspace consistency and improves clustering discriminability.
- To leverage the inherent high correlation between adjacent bands in hyperspectral imagery (HSI), we integrate total variation (TV) regularization into the self-representation model. This explicitly enforces smoothness and consistency in the representations of neighboring bands.
- We develop an efficient Alternating Direction Method of Multipliers (ADMM)-based optimization strategy to solve the non-convex ICC-SSC model. In addition, the effectiveness of ICC-SSC is demonstrated by an experimental comparison with eight state-of-the-art band selection methods on three real datasets.
2. Preliminary
2.1. SSC
2.2. Norm-Based SSC
3. Method
3.1. Proposed Model
3.2. Solution for the Model of ICC-SSC
| Algorithm 1: The Algorithm for ICC-SSC |
|
3.3. Band Selection via Information Entropy
4. Experiments and Discussion
4.1. Datasets
4.2. Experimental Setup
4.3. Parameter Setting
4.4. Experimental Results
4.4.1. Overall Classification Results
4.4.2. Analysis of Per-Class Results
4.5. Convergence Analysis
4.6. Algorithm Complexity Analysis
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HSI | Hyperspectral remote sensing image |
| SSC | Sparse subspace clustering |
| ICC-SSC | Interband consistency-constrained structural subspace clustering |
| ADMM | Alternating direction multiplier method |
| WaLuDi | Ward’s linkage strategy using divergence |
| MVPCA | Maximum-variance principal component analysis |
| ASPS | Adaptive subspace partition strategy |
| E-FDPC | Enhanced fast density-peak-based clustering |
| FNGBS | Fast neighborhood grouping method for hyperspectral band selection |
| GAMR | Global affinity matrix reconstruction |
| DSC | Deep subspace clustering method |
| TGSR | Tensorial global–local graph self-representation |
| SVM | Support vector machine |
| KNN | K-nearest neighbor |
| OA | Overall accuracy |
| AOA | Average overall accuracy |
References
- Hu, P.; Liu, X.; Cai, Y.; Cai, Z. Band Selection of Hyperspectral Images Using Multiobjective Optimization-Based Sparse Self-Representation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 452–456. [Google Scholar] [CrossRef]
- Kang, X.; Wang, Z.; Duan, P.; Wei, X. The Potential of Hyperspectral Image Classification for Oil Spill Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538415. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, X.; Gong, B.; Hu, Y.; Song, M.; Yu, H. Distillation-Constrained Prototype Representation Network for Hyperspectral Image Incremental Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5507414. [Google Scholar] [CrossRef]
- He, X.; Tang, C.; Liu, X.; Zhang, W.; Sun, K.; Xu, J. Object Detection in Hyperspectral Image via Unified Spectral–Spatial Feature Aggregation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5521213. [Google Scholar] [CrossRef]
- Deng, Y.-J.; Li, H.-C.; Fu, K.; Du, Q.; Emery, W.J. Tensor Low-Rank Discriminant Embedding for Hyperspectral Image Dimensionality Reduction. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7183–7194. [Google Scholar] [CrossRef]
- Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, B. Spatial–Spectral Hypergraph-Based Unsupervised Band Selection for Hyperspectral Remote Sensing Image. IEEE Sens. J. 2024, 24, 27870–27882. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Baisantry, M.; Sao, A.K.; Shukla, D.P. Discriminative Spectral–Spatial Feature Extraction-Based Band Selection for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518014. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Liu, X.; Lei, Y.; Jeon, G. Multicriteria semi-supervised hyperspectral band selection based on evolutionary multitask optimization. Knowl.-Based Syst. 2022, 240, 107934. [Google Scholar] [CrossRef]
- Yang, H.; Du, Q.; Chen, G. Unsupervised Hyperspectral Band Selection Using Graphics Processing Units. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 660–668. [Google Scholar] [CrossRef]
- Chang, C.I.; Du, Q.; Sun, T.L.; Althouse, M. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2631–2641. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. A Fast Neighborhood Grouping Method for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5028–5039. [Google Scholar] [CrossRef]
- Xu, B.; Li, X.; Hou, W.; Wang, Y.; Wei, Y. A Similarity-Based Ranking Method for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9585–9599. [Google Scholar] [CrossRef]
- Sawant, S.S.; Manoharan, P. Unsupervised band selection based on weighted information entropy and 3D discrete cosine transform for hyperspectral image classification. Int. J. Remote Sens. 2020, 41, 3948–3969. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, C.; Ma, A.; Zhang, L.; Gong, X.; Zhong, Y. Adaptive Multistrategy Particle Swarm Optimization for Hyperspectral Remote Sensing Image Band Selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5520115. [Google Scholar] [CrossRef]
- Wu, M.; Ou, X.; Lu, Y.; Li, W.; Yu, D.; Liu, Z.; Ji, C. Heterogeneous Cuckoo Search-Based Unsupervised Band Selection for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 62, 5500616. [Google Scholar] [CrossRef]
- Su, H.; Du, Q.; Chen, G.; Du, P. Optimized Hyperspectral Band Selection Using Particle Swarm Optimization. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2659–2670. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Gong, D.; Song, X.; Sun, X. A Multitask Bee Colony Band Selection Algorithm with Variable-Size Clustering for Hyperspectral Images. IEEE Trans. Evol. Comput. 2022, 26, 1566–1580. [Google Scholar] [CrossRef]
- Jia, S.; Tang, G.; Zhu, J.; Li, Q. A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 88–102. [Google Scholar] [CrossRef]
- MartÍnez-UsÓMartinez-Uso, A.; Pla, F.; Sotoca, J.M.; GarcÍa-Sevilla, P. Clustering-Based Hyperspectral Band Selection Using Information Measures. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4158–4171. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. Hyperspectral Band Selection via Adaptive Subspace Partition Strategy. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 4940–4950. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.-Q.; Chan, J.C.-W. Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Zeng, M.; Cai, Y.; Cai, Z.; Liu, X.; Hu, P.; Ku, J. Unsupervised Hyperspectral Image Band Selection Based on Deep Subspace Clustering. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1889–1893. [Google Scholar] [CrossRef]
- Das, S.; Pratiher, S.; Kyal, C.; Ghamisi, P. Sparsity Regularized Deep Subspace Clustering for Multicriterion-Based Hyperspectral Band Selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 4264–4278. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2765–2781. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, L.; Du, B.; Li, W.; Lai, Y.M. Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2784–2797. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, H.; Pižurica, A. A Structural Subspace Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5509515. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Liu, X.; Cai, Z. Efficient Graph Convolutional Self-Representation for Band Selection of Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 4869–4880. [Google Scholar] [CrossRef]
- You, M.; Yuan, A.; Zou, M.; Konno, K. Robust Unsupervised Hyperspectral Band Selection via Global Affinity Matrix Reconstruction. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 7374–7384. [Google Scholar] [CrossRef]
- Zhu, P.; Zuo, W.; Zhang, L.; Hu, Q.; Shiu, S.C.K. Unsupervised feature selection by regularized self-representation. Pattern Recognit. 2015, 48, 438–446. [Google Scholar] [CrossRef]
- Dong, W.; Wu, X.J.; Kittler, J. Subspace clustering via joint ℓ1,2 and ℓ2,1 norms. Inf. Sci. 2022, 612, 675–686. [Google Scholar] [CrossRef]
- Sun, W.; Peng, J.; Yang, G.; Du, Q. Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3906–3915. [Google Scholar] [CrossRef]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 172–184. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Squaring weighted low-rank subspace clustering for hyperspectral image band selection. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2434–2437. [Google Scholar]
- Zhang, Z.; Wang, D.; Sun, X.; Zhuang, L.; Liu, R.; Ni, L. Spatial Sampling and Grouping Information Entropy Strategy Based on Kernel Fuzzy C-Means Clustering Method for Hyperspectral Band Selection. Remote Sens. 2022, 14, 5058. [Google Scholar] [CrossRef]
- Peng, Z.; Jia, Y.; Liu, H.; Hou, J.; Zhang, Q. Maximum Entropy Subspace Clustering Network. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 2199–2210. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, J.; Gong, M. Unsupervised Hyperspectral Band Selection by Fuzzy Clustering With Particle Swarm Optimization. IEEE Trans. Geosci. Remote Sens. 2017, 14, 773–777. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, J.; Wang, X.; Cai, Z.; Peng, J.; Zhou, Y. Tensorial Global-Local Graph Self-Representation for Hyperspectral Band Selection. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 13213–13225. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Wang, Q. Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445. [Google Scholar] [CrossRef]
- Ning, S.; Wang, W. Global-Local Consistency Constrained Deep Embedded Clustering for Hyperspectral Band Selection. IEEE Access 2023, 11, 129709–129721. [Google Scholar] [CrossRef]











| Dataset | Pixels | Spatial Resolutions | Classes | Bands |
|---|---|---|---|---|
| Botswana | 1476 × 256 pixels | 30 m/pixel | 14 | 145 |
| Indian Pines | 145 × 145 pixels | 20 m/pixel | 16 | 200 |
| Pavia University | 610 × 340 pixels | 1.3 m/pixel | 9 | 103 |
| Dataset | Classifier | ICC-SSC | MVPCA (1999) [12] | WaLuDi (2007) [21] | E-FDPC (2016) [20] | DSC (2019) [24] | ASPS (2019) [22] | FNGBS (2021) [13] | GAMR (2023) [30] | TGSR (2024) [42] |
|---|---|---|---|---|---|---|---|---|---|---|
| Botswana | AOA (SVM) | 90.482 ± 0.314 | 76.147 ± 0.444 | 87.105 ± 0.264 | 71.678 ± 0.444 | 87.107 ± 0.746 | 86.885 ± 0.389 | 88.271 ± 0.131 | 87.418 ± 0.811 | 88.419 ± 0.289 |
| Kappa (SVM) | 0.8823 ± 0.0034 | 0.7416 ± 0.0048 | 0.8603 ± 0.0029 | 0.6934 ± 0.0048 | 0.8604 ± 0.0081 | 0.8579 ± 0.0042 | 0.8730 ± 0.0014 | 0.8637 ± 0.0088 | 0.8745 ± 0.0031 | |
| AOA (KNN) | 86.886 ± 0.204 | 80.010 ± 0.136 | 86.331 ± 0.175 | 79.021 ± 0.319 | 85.417 ± 0.354 | 83.620 ± 0.245 | 86.568 ± 0.314 | 85.885 ± 0.748 | 86.2287 ± 0.192 | |
| Kappa (KNN) | 0.8575 ± 0.0022 | 0.7834 ± 0.0015 | 0.8519 ± 0.0019 | 0.7729 ± 0.0034 | 0.8420 ± 0.0038 | 0.8226 ± 0.0025 | 0.8461 ± 0.0034 | 0.8341 ± 0.0081 | 0.851 ± 0.0021 | |
| Indian Pines | AOA (SVM) | 80.865 ± 0.350 | 64.263 ± 0.217 | 77.433 ± 0.217 | 64.126 ± 0.098 | 77.740 ± 0.687 | 77.509 ± 0.477 | 80.044 ± 0.189 | 76.974 ± 0.545 | 79.917 ± 0.544 |
| Kappa (SVM) | 0.7818 ± 0.0038 | 0.5853 ± 0.0021 | 0.7397 ± 0.0020 | 0.6199 ± 0.0011 | 0.7455 ± 0.0079 | 0.7372 ± 0.0049 | 0.7758 ± 0.0022 | 0.7497 ± 0.0066 | 0.7709 ± 0.0062 | |
| AOA (KNN) | 72.786 ± 0.313 | 60.795 ± 0.180 | 67.953 ± 0.124 | 64.017 ± 0.204 | 69.081 ± 0.771 | 68.531 ± 0.497 | 71.248 ± 0.151 | 69.980 ± 0.936 | 71.384 ± 0.779 | |
| Kappa (KNN) | 0.6884 ± 0.0035 | 0.5505 ± 0.0019 | 0.6327 ± 0.0014 | 0.5863 ± 0.0014 | 0.6457 ± 0.0090 | 0.6395 ± 0.0056 | 0.6705 ± 0.0017 | 0.6558 ± 0.0108 | 0.6720 ± 0.0091 | |
| Pavia University | AOA (SVM) | 87.527 ± 0.168 | 76.708 ± 0.076 | 86.246 ± 0.091 | 81.176 ± 0.105 | 86.117 ± 0.388 | 85.899 ± 0.2153 | 86.223 ± 0.104 | 84.544 ± 0.637 | 86.334 ± 0.305 |
| Kappa (SVM) | 0.8340 ± 0.0023 | 0.6683 ± 0.0011 | 0.8168 ± 0.0012 | 0.7495 ± 0.0014 | 0.8150 ± 0.0051 | 0.8120 ± 0.0028 | 0.8164 ± 0.0014 | 0.7931 ± 0.0062 | 0.8180 ± 0.0040 | |
| AOA (KNN) | 88.353 ± 0.087 | 82.592 ± 0.067 | 85.931 ± 0.054 | 86.268 ± 0.066 | 86.680 ± 0.276 | 87.456 ± 0.212 | 87.099 ± 82.554 | 87.506 ± 0.649 | 87.448 ± 0.0028 | |
| Kappa (KNN) | 0.8426 ± 0.00133 | 0.7622 ± 0.0008 | 0.8095 ± 0.0007 | 0.8141 ± 0.0009 | 0.8199 ± 0.0032 | 0.8305 ± 0.0029 | 0.8255 ± 0.0006 | 0.8315 ± 0.0089 | 0.8274 ± 0.0039 |
| Class | Precision | F1-Score | Recall |
|---|---|---|---|
| Alfalfa | 0.7234 | 0.8095 | 0.9189 |
| Corn-notill | 0.7563 | 0.7993 | 0.8476 |
| Corn-mintill | 0.7636 | 0.7513 | 0.7395 |
| Corn | 0.7348 | 0.7170 | 0.7000 |
| Grass-pasture | 0.8646 | 0.9021 | 0.9430 |
| Grass-trees | 0.9258 | 0.9535 | 0.9829 |
| Grass-pasture-mowed | 0.7143 | 0.6977 | 0.6818 |
| Hay-windrowed | 0.9808 | 0.9571 | 0.9346 |
| Oats | 0.5217 | 0.6154 | 0.7500 |
| Soybean-notill | 0.8267 | 0.7987 | 0.7725 |
| Soybean-mintill | 0.8302 | 0.8296 | 0.8289 |
| Soybean-clean | 0.8670 | 0.8308 | 0.7975 |
| Wheat | 0.9045 | 0.9415 | 0.9817 |
| Woods | 0.9487 | 0.9305 | 0.9130 |
| Buildings-grass-trees-drives | 0.7290 | 0.6690 | 0.6181 |
| Stone-steel-towers | 1.0000 | 0.8955 | 0.8108 |
| Macro average | 0.8187 | 0.8182 | 0.8263 |
| Weighed average | 0.8401 | 0.8420 | 0.8406 |
| Class | Precision | F1-Score | Recall |
|---|---|---|---|
| Asphalt | 0.9188 | 0.9075 | 0.9131 |
| Meadows | 0.9506 | 0.9352 | 0.9428 |
| Gravel | 0.7195 | 0.7402 | 0.7297 |
| Trees | 0.9323 | 0.9485 | 0.9403 |
| Painted metal sheets | 0.9963 | 1.0000 | 0.9981 |
| Bare soil | 0.7773 | 0.8128 | 0.7947 |
| Bitumen | 0.8534 | 0.8423 | 0.8478 |
| Self-blocking bricks | 0.7811 | 0.7979 | 0.7894 |
| Shadows | 0.9960 | 0.9895 | 0.9928 |
| Macro average | 0.8832 | 0.8860 | 0.8806 |
| Weighed average | 0.8968 | 0.8964 | 0.8975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, W. Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection. Sensors 2025, 25, 7265. https://doi.org/10.3390/s25237265
Wang Z, Wang W. Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection. Sensors. 2025; 25(23):7265. https://doi.org/10.3390/s25237265
Chicago/Turabian StyleWang, Zengke, and Wenhong Wang. 2025. "Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection" Sensors 25, no. 23: 7265. https://doi.org/10.3390/s25237265
APA StyleWang, Z., & Wang, W. (2025). Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection. Sensors, 25(23), 7265. https://doi.org/10.3390/s25237265

