Application of Quantum Dots in Chinese Herbal Medicines: Advances in Detection, Pollutant Degradation, and Pharmacological Enhancement
Abstract
1. Introduction
2. Application of QDs in the Detection of Active Ingredients in CHMs
3. Application of QDs in the Detection of Common Exogenous Pollutants in CHMs and Related Environments
3.1. Application of QDs in Pesticide Residue Detection

3.2. Application of QDs in Heavy Metal Detection
3.3. Application of QDs in Mycotoxin Detection
3.4. QD Applications in the Detection of Other Exogenous Pollutants
3.5. Analysis of QD Detection Strategies for Exogenous Contaminants in CHMs
4. Application of QDs in the Photodegradation of Exogenous Pollutants and Their Prospects in CHMs
5. Preparation and Application of QDs Made from CHMs
5.1. Applications in Detection and Analysis
5.2. Enhancement or Improvement in Pharmacodynamic Effects
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.; Dhawan, A.; Karhana, S.; Bhat, M.; Dinda, A.K. Quantum Dots: An Emerging Tool for Point-of-Care Testing. Micromachines 2020, 11, 1058. [Google Scholar] [CrossRef] [PubMed]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef]
- Agarwal, K.; Rai, H.; Mondal, S. Quantum Dots: An Overview of Synthesis, Properties, and Applications. Mater. Res. Express 2023, 10, 062001. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, B.; Xiao, Y.; Tian, X.; Wang, Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. Chemosensors 2023, 11, 405. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Liu, Z.; Li, J. Research Progress in the Synthesis and Biological Application of Quantum Dots. New J. Chem. 2022, 46, 20515–20539. [Google Scholar] [CrossRef]
- Pleskova, S.; Mikheeva, E.; Gornostaeva, E. Using of Quantum Dots in Biology and Medicine. In Cellular and Molecular Toxicology of Nanoparticles; Saquib, Q., Faisal, M., AlKhedhairy, A.A., Alatar, A.A., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2018; Volume 1048, pp. 323–334. [Google Scholar]
- Ma, P.; Jia, X.; He, Y.; Tao, J.; Wang, Q.; Wei, C. Recent Progress of Quantum Dots for Food Safety Assessment: A Review. Trends Food Sci. Technol. 2024, 143, 104310. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y.; Wang, S.; Wang, H.; Ma, A.; Wang, J.; Sun, B. Sensitive Detection of Pyrraline Using a ZnCdSe/ZnS Quantum Dot Molecularly Imprinted Polyethersulfone Fluorescent Membrane. J. Membr. Sci. 2023, 685, 121948. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, L.; Wu, R.; Li, L.S. Recent Progress on Eco-Friendly Quantum Dots for Bioimaging and Diagnostics. Nano Res. 2024, 17, 10309–10331. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, J.; Cao, Y.; Liao, C.; Lan, T.; Shi, S. Visual Detection of Glyphosate by Al3+-Regulated Carbon Dots/CdTe Quantum Dots Ratiometric Fluorescent Sensing Platform. Food Chem. 2025, 473, 143070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Q.; Long, K.; Zhou, K.; Yang, Z.; Ge, A.; Hu, J.; Peng, C.; Wang, W.; Wang, H.; et al. Visual and Fluorescence Dual Mode Platform for Sensitive and Accurate Screening of Breast Carcinoma. Biosens. Bioelectron. 2025, 271, 117047. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. Original Core–Shell Structure of Cubic CsPbBr3@Amorphous CsPbBrx Perovskite Quantum Dots with a High Blue Photoluminescence Quantum Yield of over 80%. ACS Energy Lett. 2018, 3, 245–251. [Google Scholar] [CrossRef]
- Ding, B.; Wu, X.; Zhao, J.; Hou, W.; Chen, L.; Cui, J.; Ma, S.; Yin, S. Highly Bright and Ultra-Stable Cyan-Emitting Perovskite Quantum Dots Encapsulated in Zeolitic Imidazolate Framework-11 for Advanced Optoelectronic Applications. Chem. Eng. J. 2025, 518, 164706. [Google Scholar] [CrossRef]
- Chu, S.; Wang, H.; Ling, X.; Yu, S.; Yang, L.; Jiang, C. A Portable Smartphone Platform Using a Ratiometric Fluorescent Paper Strip for Visual Quantitative Sensing. ACS Appl. Mater. Interfaces 2020, 12, 12962–12971. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.X.; Chan, G.; Hu, Y.; Ouyang, D.; Ung, C.O.L.; Shi, L.; Hu, H. Internationalization of Traditional Chinese Medicine: Current International Market, Internationalization Challenges and Prospective Suggestions. Chin. Med. 2018, 13, 9. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, Y.; Yang, J.; Meng, X. Overview of traditional Chinese medicine quality evaluation method based on overall research. Zhongguo Zhong Yao Za Zhi 2015, 40, 1027–1031. [Google Scholar]
- Zhao, G.; Pan, H.; Tan, Y.; Zhou, H.; Mao, X.; Hu, Q.; Ji, S. Research progress on holistic quality control of Notoginseng Radix et Rhizoma based on effective ingredients and exogenous contaminants. Chin. Tradit. Herb. Drugs 2025, 56, 318–329. [Google Scholar]
- Xie, S.; Chi, S.; Ma, E.; Zhou, J.; Chen, Z. Analysis of Exogenous Harmful Residues in Chinese Herbal Medicines and Sliced Herbs. Agric. Prod. Process 2024, 23, 61–67. [Google Scholar]
- Mu, J.; Li, H.; Xu, M.; Luo, T.; Luo, Z.; Yang, N.; Xu, D. From Tradition to Innovation: Systematic Analysis of Quality Markers (Q-Markers) in Traditional Chinese Medicine. Chin. J. Anal. Chem. 2025, 53, 100502. [Google Scholar] [CrossRef]
- Chen, W.; Luo, H.; Zhong, Z.; Wei, J.; Wang, Y. The Safety of Chinese Medicine: A Systematic Review of Endogenous Substances and Exogenous Residues. Phytomedicine 2023, 108, 154534. [Google Scholar] [CrossRef]
- Aleluia, A.C.M.; Nascimento, M.D.S.; dos Santos, A.M.P.; dos Santos, W.N.L.; Santos, A.D.F., Jr.; Ferreira, S.L.C. Analytical Approach of Elemental Impurities in Pharmaceutical Products: A Worldwide Review. Spectrochim. Acta Part B At. Spectrosc. 2023, 205, 106689. [Google Scholar] [CrossRef]
- Ai, S.; Li, Y.; Zheng, H.; Zhang, M.; Tao, J.; Liu, W.; Peng, L.; Wang, Z.; Wang, Y. Collision of Herbal Medicine and Nanotechnology: A Bibliometric Analysis of Herbal Nanoparticles from 2004 to 2023. J. Nanobiotechnol. 2024, 22, 140. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Li, D.; Yuan, H.; Shen, C. Eco-Friendly Synthesized Carbon Dots from Chinese Herbal Medicine: A Review. Int. J. Nanomed. 2025, 20, 3045–3065. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, B. Traditional Chinese Medicine Network Pharmacology: Theory, Methodology and Application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Omer, K.M.; Al-Hashimi, B.; Mohammadi, S.; Salimi, A.; Salih, Y.M.; Hassan, A.Q.; Aziz, K.H.H.; Mohammad, S.J. Carbon Nanodots as Sensitive and Selective Nanomaterials in Pharmaceutical Analysis. J. Mater. Sci. 2022, 57, 14217–14245. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China: Volume I; China Medical Science and Technology Press: Beijing, China, 2020; pp. 3–402. [Google Scholar]
- Guo, S.; Lan, J.; Liu, B.; Zheng, B.; Gong, X.; Fan, X. Continuous Flow Synthesis of N-Doped Carbon Quantum Dots for Total Phenol Content Detection. Chemosensors 2022, 10, 334. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Li, R.; Xu, P.; Li, Z. Synthesis of histidine and pentaethylenetetramine-functionalized boron-doped graphene quantum dots for fluorescence detection of curcumin in Chinese herbal medicines. Chin. J. Anal. Lab 2023, 42, 1150–1157. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y.; Zeng, C.; Zhong, Y.; Wang, S.; Liu, W.; Chen, Q.; Pang, M.; Wang, Y.; Zhu, R.; et al. Dual-Template Molecularly Imprinted Double Emission Proportional Fluorescence Sensor Based on CsPbBr3 and CsPb(Br/I)3 Perovskite Quantum Dots for Visual, Selective and Sensitive Detection of Methyl Eugenol and Aristolochic Acid A. Sens. Actuator B-Chem. 2024, 417, 136189. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, L. Molecular Pharmacognosy in Daodi herbs. Chin. Sci. Bull. 2020, 65, 1093–1102. [Google Scholar] [CrossRef]
- Long, W.; Guan, Y.; Lei, G.; Hu, Z.; Chen, H.; She, Y.; Fu, H. Machine Learning-Assisted Visual Sensor Array for Identifying the Origin of Lilium Bulbs. Sens. Actuator B-Chem. 2024, 399, 134812. [Google Scholar] [CrossRef]
- Liu, L.; Mi, Z.; Hu, Q.; Li, C.; Li, X.; Feng, F. One-Step Synthesis of Fluorescent Carbon Dots for Sensitive and Selective Detection of Hyperin. Talanta 2018, 186, 315–321. [Google Scholar] [CrossRef]
- Cai, J.; Sun, B.; Gou, X.; Gou, Y.; Li, W.; Hu, F. A Novel Way for Analysis of Calycosin via Polyaniline Functionalized Graphene Quantum Dots Fabricated Electrochemical Sensor. J. Electroanal. Chem. 2018, 816, 123–131. [Google Scholar] [CrossRef]
- Zhang, J.; Nan, D.; Pan, S.; Liu, H.; Yang, H.; Hu, X. N,S Co-Doped Carbon Dots as a Dual-Functional Fluorescent Sensor for Sensitive Detection of Baicalein and Temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117161. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Mi, Z.; Hu, Q.; Li, C.; Li, X.; Feng, F. Green Synthesis of Fluorescent Carbon Dots as an Effective Fluorescence Probe for Morin Detection. Anal. Methods 2019, 11, 353–358. [Google Scholar] [CrossRef]
- Liu, L.; Mi, Z.; Guo, Z.; Wang, J.; Feng, F. A Label-Free Fluorescent Sensor Based on Carbon Quantum Dots with Enhanced Sensitive for the Determination of Myricetin in Real Samples. Microchem. J. 2020, 157, 104956. [Google Scholar] [CrossRef]
- Li, F.; Gao, J.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Selective and Sensitive Determination of Celastrol in Traditional Chinese Medicine Based on Molecularly Imprinted Polymers Modified Mn-Doped ZnS Quantum Dots Optosensing Materials. Colloid Surf. B-Biointerfaces 2020, 190, 110929. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Y.; Dong, J.; Luo, Z. Screening Aptamers That Are Specific for Beclomethasone and the Development of Quantum Dot-Based Assay. Appl. Biochem. Biotechnol. 2021, 193, 3139–3150. [Google Scholar] [CrossRef]
- Ye, J.; Cai, X.; Zhou, Q.; Yan, Z.; Li, K. Molecularly Imprinted Ratiometric Fluorescent Probe for Visual and Fluorescent Determination of Aristolochic Acid I Based on a Schiff-Base Fluorescent Compound. Microchim. Acta 2020, 187, 623. [Google Scholar] [CrossRef]
- Luo, K.; Chen, H.; Zhou, Q.; Yan, Z.; Su, Z.; Li, K. A Facile One Step Solvothermal Controllable Synthesis of FeS2 Quantum Dots with Multiple Color Emission for the Visual Detection of Aconitine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118563, Corrigendum in Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 247, 119046. https://doi.org/10.1016/j.saa.2020.119046. [Google Scholar] [CrossRef]
- Zhu, R.; Du, Z.; Zhu, M.; Liang, H.; Wang, S.; Zhou, Q.; Li, R.; Li, Y.; Zeng, C.; Liu, W.; et al. Molecularly Imprinted Polymers Embedded with Double Perovskite Quantum Dots: A Ratiometric Fluorescence Sensor for Visible and Fluorescent Determination of Rhein. Chem. Eng. J. 2023, 468, 143618. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Zhao, Y.; Liu, G.; Zhang, X.; Chen, Y.; Li, C.; Wang, Z.; Zhao, N.; Sun, S. Carbon Quantum Dots Reduced Ru Nanoparticles Loaded on the Surface of MWCNTs for High-Performance Kaempferol Sensing. Microchem. J. 2025, 215, 114478. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, Y.; Zhang, L.; Li, C.; Wang, Z.; Liu, Y.; Geng, Z.; Shen, M.; Sun, L.; Wei, F.; et al. Levels and Health Risk of Pesticide Residues in Chinese Herbal Medicines. Front. Pharmacol. 2022, 12, 818268. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of Exposure to Pesticide Residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 365, 857–867. [Google Scholar] [CrossRef]
- Mu, X.-Q.; Wang, D.; Meng, L.-Y.; Wang, Y.-Q.; Chen, J. Glutathione-Modified Graphene Quantum Dots as Fluorescent Probes for Detecting Organophosphorus Pesticide Residues in Radix Angelica Sinensis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 122021. [Google Scholar] [CrossRef]
- Li, R.; Mu, X.; Xu, J.; Zeng, F. Silicon Quantum Dots Based Fluorescent Probes for Detecting Methyl Parathion Pesticide Residues in Potato, Tap Water and Yellow River. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125071. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Ray, S. Application of Carbon Quantum Dots Derived from Waste Tea for the Detection of Pesticides in Tea: A Novel Biosensor Approach. ACS Omega 2024, 9, 50201–50213. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, Y.; Kasashima, Y.; Hashimoto, K.; Sasaki, T.; Tomisaki, K.; Mino, T.; Sakamoto, M.; Fujita, T. Reaction of Carboxylic Acids with Vinyl Ethers under Solvent-Free Conditions Using Molecular Iodine as a Catalyst. J. Oleo Sci. 2013, 62, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Khan, S.; Rahim, G.; Alharbi, W.; Alharbi, K.H. Highly Selective and Sensitive Spectrofluorimetric Method for Determination of Cypermethrin in Different Environmental Samples. Environ. Monit. Assess. 2022, 194, 890. [Google Scholar] [CrossRef]
- Lin, M.; Guo, Y.; Xiang, L.; Liang, D.; Li, L.; Li, Y.; Qu, J. CdTe@ZnS Quantum Dots for Rapid Detection of Organophosphorus Pesticide in Agricultural Products. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124451. [Google Scholar] [CrossRef]
- Kumar, J.V.; Rhim, J.-W. Fluorescence Probe for Detection of Malathion Using Sulfur Quantum Dots@Graphitic-Carbon Nitride Nanocomposite. Luminescence 2025, 40, e70112. [Google Scholar] [CrossRef]
- Fei, J.C.; Sun, S.W. Green Synthesis of N-Doped Carbon Quantum Dots Derived from Ginkgo Biloba L. Leaves for the Determination of Butocarboxim Based on a “Turn-off” Fluorescent Probe. Biomass Convers. Biorefinery 2024, 14, 21695–21703. [Google Scholar] [CrossRef]
- Rostami, M.; Zhang, B.; Zhang, Y. Selective Detection of Nitenpyram by Silica-Supported Carbon Quantum Dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 292, 122387. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bai, L.; Jia, Z.; Lv, X.; Huang, X. Detection of Acetamiprid by Aptamer Based on a Porous Silicon Microcavity. IEEE Photonics J. 2022, 14, 6801006. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, H.; Niu, X.; Wang, Q.; Liu, Y.; Wu, Y. Aptamer-Mediated Carbon Dots as Fluorescent Signal for Ultrasensitive Detection of Carbendazim in Vegetables and Fruits. J. Food Compos. Anal. 2022, 114, 104730. [Google Scholar] [CrossRef]
- Liu, H.; Lei, X.; Zhu, L.; Chen, L.; Ding, L. Rational Design and Construction of a Mesoporous Silica-Supported Ratiometric Fluorescent Probe for the Sensitive Detection of Nicosulfuron. Talanta 2025, 286, 127542. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Geng, W.; Guo, X.; Liu, Y.; Liu, S.; Jin, X.; Chang, Y.; Lin, T.; Zhu, L.; Ma, Y. A Dual Quantum Dots-Based Ratio Fluorescent Probe for Detecting Glyphosate in Agricultural Products. Microchem. J. 2025, 212, 113214. [Google Scholar] [CrossRef]
- Patel, S.; Shrivas, K.; Sinha, D.; Karbhal, I.; Patle, T.K.; Monisha; Tikeshwari. A Portable Smartphone-Assisted Digital Image Fluorimetry for Analysis of Methiocarb Pesticide in Vegetables: Nitrogen-Doped Carbon Quantum Dots as a Sensing Probe. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122824. [Google Scholar] [CrossRef]
- Gu, C.; Ji, S.; Chen, Z.; Yang, W.; Deng, Y.; Zhao, M.; Huang, W.; Yang, W.; Xu, W. Enrichment-Catalytic Synergistically Enhanced Electrochemiluminescence Sensors Based on IRMOF-3/CdTe for Ultrasensitive Detection of Organophosphorus Pesticides. Biosens. Bioelectron. 2025, 279, 117398. [Google Scholar] [CrossRef]
- Shan, X.; Lu, J.; Wu, Q.; Li, C.; Li, H.; Yang, S.; Tian, L. Solid-State Electrochemiluminescence Sensor of CQDs Based on ZIFs Electrospun Carbon Fiber for Malathion Detection. Microchem. J. 2023, 195, 109496. [Google Scholar] [CrossRef]
- Yu, P.; Li, M.; Wang, S.; Li, S.; Cui, J.; Yang, J.; Liu, S.; Kong, L.; Chen, Z. Bi2S3/BiOCl Heterojunction-Based Photoelectrochemical Aptasensor for Ultrasensitive Assay of Fumonisin B1 via Signal Amplification with in Situ Grown Ag2S Quantum Dots. Microchim. Acta 2024, 191, 762. [Google Scholar] [CrossRef]
- Yao, H. Research progress on detection methods for heavy metals in traditional Chinese medicine. J. Shenyang Pharm. Univ. 2022, 39, 1399–1408. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, Q.; Song, Y.; Zhang, J.; Yang, Y.; Xia, X.; Han, Q. Rapid Determination of Cadmium in Panax Notoginseng Using NCDs Quantum Carbon Dots-Aptamer Fluorescence Sensor. J. Food Meas. Charact. 2022, 16, 2459–2467. [Google Scholar] [CrossRef]
- He, J.H.; Cheng, Y.Y.; Yang, T.; Zou, H.Y.; Huang, C.Z. Functional Preserving Carbon Dots-Based Fluorescent Probe for Mercury (II) Ions Sensing in Herbal Medicines via Coordination and Electron Transfer. Anal. Chim. Acta 2018, 1035, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, X.; Zhou, Y.; Huang, A.; Sun, Y.; Duan, Z.; Yang, S.; Liao, C.; Liu, Y.; Wen, X. Sulfur Quantum Dots as Effective Fluorescent Nanoprobes for Detecting Co2+ in Salviae Miltiorrhizae Radix et Rhizoma. Microchem. J. 2023, 193, 109135. [Google Scholar] [CrossRef]
- Hu, Z.; Long, W.; Liu, T.; Guan, Y.; Lei, G.; Suo, Y.; Jia, M.; He, J.; Chen, H.; She, Y.; et al. A Sensitive Fluorescence Sensor Based on a Glutathione Modified Quantum Dot for Visual Detection of Copper Ions in Real Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122517. [Google Scholar] [CrossRef]
- Wang, S.; Deng, G.; Yang, J.; Chen, H.; Long, W.; She, Y.; Fu, H. Carbon Dot- and Gold Nanocluster-Based Three-Channel Fluorescence Array Sensor: Visual Detection of Multiple Metal Ions in Complex Samples. Sens. Actuator B-Chem. 2022, 369, 132194. [Google Scholar] [CrossRef]
- Han, Z.; Ren, Y.; Zhu, J.; Cai, Z.; Chen, Y.; Luan, L.; Wu, Y. Multianalysis of 35 Mycotoxins in Traditional Chinese Medicines by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Coupled with Accelerated Solvent Extraction. J. Agric. Food Chem. 2012, 60, 8233–8247. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Liu, B.; Wang, H.; Zhang, D.; Li, Z. A Facile “Turn-on” Fluorescent Aptasensor for Simultaneous Detection of Dual Mycotoxins in Traditional Chinese Medicine Based on Graphene Oxide and FRET. Toxicon 2022, 206, 42–50. [Google Scholar] [CrossRef]
- Liu, L. Study on Analytical Methods of Ochratoxin A based on Nanomaterial-Enabled Ffluorescent Sensors. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Yu, P.; Cui, J.; Yang, J.; Khan, M.U.; Yang, L.; Li, S.; Li, M.; Liu, S.; Kong, L.; Chen, Z. A Novel Aptamer-Based Photoelectrochemical Sensor for Zearalenone Detection: Integration of g-C3N4/BiOBr with in Situ Growth Ag2S Quantum Dots. Bioelectrochemistry 2025, 162, 108853. [Google Scholar] [CrossRef]
- Sun, C.; Liao, X.; Jia, B.; Shi, L.; Zhang, D.; Wang, R.; Zhou, L.; Kong, W. Development of a ZnCdS@ZnS Quantum Dots–Based Label-Free Electrochemiluminescence Immunosensor for Sensitive Determination of Aflatoxin B1 in Lotus Seed. Microchim. Acta 2020, 187, 236. [Google Scholar] [CrossRef]
- Chen, M.-M.; Liu, Y.; Zhao, S.; Jiang, J.; Zhang, Q.; Li, P.; Tang, X. Carbon Nanospheres Bridging in Perovskite Quantum Dots/BiOBr: An Efficient Heterojunction for High-Performance Photoelectrochemical Sensing of Deoxynivalenol. Carbon 2024, 221, 118919. [Google Scholar] [CrossRef]
- Mondal, T.; Mondal, S.; Ghosh, S.K.; Pal, P.; Soren, T.; Pandey, S.; Maiti, T.K. Phthalates-A Family of Plasticizers, Their Health Risks, Phytotoxic Effects, and Microbial Bioaugmentation Approaches. Environ. Res. 2022, 214, 114059. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Li, J.; Dong, J.; Liu, H.; Zhao, J.; Luo, X.; Huo, D.; Hou, C. B-Doped Graphene Quantum Dots Array as Fluorescent Sensor Platforms for Plasticizers Detection. Sens. Actuator B-Chem. 2023, 376, 132989. [Google Scholar] [CrossRef]
- Jia, M.; Mi, W.; Guo, X.; Zhang, M. A Ratiometric Fluorescent Sensor Based on Dual-Emitting Carbon Dots for the Rapid Detection of Sulfite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125132. [Google Scholar] [CrossRef]
- Wang, R.; Wang, R.; Ju, D.; Lu, W.; Jiang, C.; Shan, X.; Chen, Q.; Sun, G. “ON–OFF–ON” Fluorescent Probes Based on Nitrogen-Doped Carbon Dots for Hypochlorite and Bisulfite Detection in Living Cells. Analyst 2018, 143, 5834–5840. [Google Scholar] [CrossRef]
- Wang, K.; Bi, C.; Zelenkov, L.; Liu, X.; Song, M.; Wang, W.; Makarov, S.; Yin, W. Fluorescent Sensing for the Detection and Quantification of Sulfur-Containing Gases. ACS Sens. 2024, 9, 5708–5727. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Feuerstein, M.L.; Warth, B. The Role of Residual (Veterinary) Antibiotics in Chemical Exposome Analysis: Current Progress and Future Perspectives. Compr. Rev. Food. Sci. Food Saf. 2025, 24, e70105. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-X.; Li, Y.-H.; Zhou, Y.-L.; Zhang, J.-H.; Wei, Q.-Z.; Dai, T.; Wang, L. Rapidly Detecting Antibiotics with Magnetic Nanoparticle Coated CdTe Quantum Dots. RSC Adv. 2020, 10, 1966–1970. [Google Scholar] [CrossRef]
- Santos, M.P.M.C.; de Oliveira, L.S.; Lima-Neto, R.G.; Andrade, C.A.S.; Oliveira, M.D.L. New Bioelectrode Based on Graphene Quantum Dots-Polypyrrole Film and Concanavalin A for Pathogenic Microorganism Detection. J. Pharm. Biomed. Anal. 2024, 248, 116299. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent Advances in Quantum Dots Photocatalysts. Chem. Eng. J. 2023, 458, 141399. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, P.; Li, L.; Li, N.; Tuerhong, R.; Su, X.; Sun, W.; Han, L. Revealing the Potential of Quantum Dot Nanomaterials in Photocatalytic Applications. Chemosphere 2024, 361, 142547. [Google Scholar] [CrossRef] [PubMed]
- Gaayathri, K.H.; Debnath, R.; Roy, M.; Saha, M. Sustainable Production of Graphene Quantum Dots from Rice Husk for Photo-Degradation of Organochlorine Pesticides. Materialwiss. Werkstofftech. 2024, 55, 487–495. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.; Lin, Y.; Wu, S.; Yu, X.; Yang, C. Bisphenol S-Doped g-C3N4 Nanosheets Modified by Boron Nitride Quantum Dots as Efficient Visible-Light-Driven Photocatalysts for Degradation of Sulfamethazine. Chem. Eng. J. 2021, 405, 126661. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, W.; Chen, Y.; Zheng, J.; Cao, L.; Duan, L.; Tang, T.; Wang, Y. Green Synthesis of Boron-Doped Carbon Dots from Chinese Herbal Residues for Fe3+ sensing, Anti-Counterfeiting, and Photodegradation Applications. J. Clean. Prod. 2023, 422, 138577. [Google Scholar] [CrossRef]
- Liu, M.; Hao, X.; Dai, S.; Wang, S.; Wang, Y.; Zhang, H. Preparation of Fluorescent Carbon Dots from Chinese Herbal Medicine Alisma and Its Potential Applications in Photocatalytic Degradation of Malachite Green and Cell Imaging. Chem. Res. Chin. Univ. 2023, 39, 234–239. [Google Scholar] [CrossRef]
- Fan, J.; Li, D.; Wang, X. Effect of Modified Graphene Quantum Dots on Photocatalytic Degradation Property. Diam. Relat. Mat. 2016, 69, 81–85. [Google Scholar] [CrossRef]
- Gao, G.; Xi, Q.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Guo, P.; Xu, J. Novel Inorganic Perovskite Quantum Dots for Photocatalysis. Nanoscale 2017, 9, 12032–12038. [Google Scholar] [CrossRef]
- Li, Z.; Li, D.; Yu, F.; Dong, L.; Zang, L.; Zhang, J.; Shi, L.; Ge, X.; Guo, S.; Zheng, Y. Novel 2D Photocatalyst of Copper-Doped Carbon Quantum Dot CD(Cu) Loaded with Ultrathin Ni-MOL for Degradation of Tetracycline. Water Sci. Technol. 2022, 86, 1835–1847. [Google Scholar] [CrossRef]
- Farahmandzadeh, F.; Molaei, M.; Karimipour, M. Ultrafast Synthesis of CdTe/ZnSe Semiconductor QDs by Microwave Method and Instigation of Structural, Optical, and Photocatalytic Properties of CdTe/ZnSe QDs. J. Mater. Sci.-Mater. Electron. 2022, 33, 95–104. [Google Scholar] [CrossRef]
- Liu, J.; Hong, Y.; Tian, X.; Meng, X.; Gao, G.; He, T.; Nie, Y.; Jin, G.; Zhai, Z.; Fu, C. Semiconductor Photocatalyst of Tin Oxide Quantum Dots Prepared in Aqueous Solution for Degradation of Organic Pollutants in Contaminated Water. Mater. Sci.-Medzg. 2022, 28, 30–34. [Google Scholar] [CrossRef]
- Nekooei, A.; Miroliaei, M.R.; Nejad, M.S.; Sheibani, H. Enhanced Visible-Light Photocatalytic Activity of ZnS/S-Graphene Quantum Dots Reinforced with Ag2S Nanoparticles. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2022, 284, 115884. [Google Scholar] [CrossRef]
- Meng, D.; Lei, Y.; Pang, M.; Qiu, J.; Fan, C.; Feng, Y.; Wang, D. Construction of Highly Active Fe/N-CQDs/MCN1 Photocatalytic Self-Fenton System for Degradation of Ciprofloxacin. J. Environ. Chem. Eng. 2023, 11, 110318. [Google Scholar] [CrossRef]
- Targhan, H.; Rezaei, A.; Aliabadi, A.; Zheng, H.; Cheng, H.; Aminabhavi, T.M. Adsorptive and Photocatalytic Degradation of Imidacloprid Pesticide from Wastewater via the Fabrication of ZIF-CdS/Tpy Quantum Dots. Chem. Eng. J. 2024, 482, 148983. [Google Scholar] [CrossRef]
- Rishabh; Rani, M.; Shanker, U.; Kaith, B.S. Enhanced Detection and Degradation of Chlorpyrifos Using N-CQDs-Based Green Nanocomposite. J. Environ. Chem. Eng. 2025, 13, 115894. [Google Scholar] [CrossRef]
- Renu; Nidhi; Kaur, P.; Komal; Minakshi; Paulik, C.; Kaushik, A.; Singhal, S. Rational Design of Boerhavia Diffusa Derived CoFe2O4-Carbon dots@Boehmite Platform for Photocatalysis and Ultra Trace Monitoring of Hazardous Pesticide and UO22+ Ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125111. [Google Scholar] [CrossRef]
- Zhang, S.; Mao, Y.; Sun, J.; Song, T.; Song, Z.; Zhao, X.; Wang, W. One-Pot Solvothermal Preparation of Triple-Emission N, Cl Doped Carbon Quantum Dots from Waste Traditional Chinese Medicines as a Fluorescent Sensor for Sensing Water and Cr (VI). Colloid Surf. A-Physicochem. Eng. Asp. 2023, 669, 131471. [Google Scholar] [CrossRef]
- Zhang, S.; Mao, Y.; Song, T.; Zhao, X.; Song, Z.; Wang, W. Ratiometric Fluorescence Probe Molecularly Imprinted Polymer Encapsulating N, S, B Doped Carbon Nanodots from Waste Clematis Chinensis Osbeck for Sensing Furazolidone. Carbon 2023, 213, 118213. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Li, X.; Li, D.; Dong, J.; Wang, P.; Chen, S.; Geng, H. Detection of Sulphur(II) of Carbon Dots Synthesized from Gardenia Residue. Anal. Methods 2024, 16, 4409–4414. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, K.; He, L.; Ding, Y.; Luo, Q.; Zhang, C.; Cui, X.; Tan, Y.; Li, L.; Wei, Y. Novel Fluorescent Nitrogen-Doped Carbon Dots Derived from Panax Notoginseng for Bioimaging and High Selectivity Detection of Cr6+. Analyst 2021, 146, 911–919. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, F.; Kong, D.; Zu, F.; Bai, Z.; Xu, J.; Chen, L. Carbon Dots as Fluorescent Probe for Selective and Sensitive Detection of Cerium (III) Ion. Desalin. Water Treat. 2018, 107, 147–154. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, D.; Yin, H.; Zhang, K.; Zeng, J.; Wang, L.; Xia, L.; Zhou, K.; Xia, Z.; Fu, Q. Facile, Green and Energy-Efficient Preparation of Fluorescent Carbon Dots from Processed Traditional Chinese Medicine and Their Applications for on-Site Semi-Quantitative Visual Detection of Cr(VI). Sens. Actuator B-Chem. 2020, 324, 128722. [Google Scholar] [CrossRef]
- Yuan, S.; Luo, Y.; Jiang, Y.; Xu, W.; Cheng, B.; Peng, Z. Poria Cocos-Derived Carbon Dots for Cellular Imaging, Free Radical Scavenging and pH Sensing. Diam. Relat. Mat. 2023, 137, 110121. [Google Scholar] [CrossRef]
- Xie, X.-L.; Zhang, Z.; Xiong, W.; Wang, J.; Gong, W.; Xu, W.; Cai, S.; Li, J. Fluorescent Sensing of Rutin by Carbon Dots Derived from the Heart of Cumin Seeds. Arab. J. Chem. 2024, 17, 105888. [Google Scholar] [CrossRef]
- Sakaew, C.; Sricharoen, P.; Limchoowong, N.; Nuengmatcha, P.; Kukusamude, C.; Kongsri, S.; Chanthai, S. Green and Facile Synthesis of Water-Soluble Carbon Dots from Ethanolic Shallot Extract for Chromium Ion Sensing in Milk, Fruit Juices, and Wastewater Samples. RSC Adv. 2020, 10, 20638–20645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, L.; Ren, S.; Hu, Z.; Wang, Y. One-Pot Synthesis of Forsythia@carbon Quantum Dots with Natural Anti-Wood Rot Fungus Activity. Mater. Des. 2021, 206, 109800. [Google Scholar] [CrossRef]
- Tsai, H.-W.; Tampubolon, N.F.; Wu, T.; Wu, M.-Y.; Lin, Y.-W. Characterization of Carbon Dots from Fructus Gardeniae (Zhi-Zi) and Gardenia Charcoal (Black Zhi-Zi) via Microwave-Assisted Extraction. J. Food Drug Anal. 2024, 32, 371. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Cheng, J.; Zhang, Y.; Kong, H.; Zhao, Y.; Qu, H. Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect. Molecules 2021, 26, 1512. [Google Scholar] [CrossRef]
- Chen, R.; Ma, H.; Li, X.; Wang, M.; Yang, Y.; Wu, T.; Zhang, Y.; Kong, H.; Qu, H.; Zhao, Y. A Novel Drug with Potential to Treat Hyperbilirubinemia and Prevent Liver Damage Induced by Hyperbilirubinemia: Carbon Dots Derived from Platycodon Grandiflorum. Molecules 2023, 28, 2720. [Google Scholar] [CrossRef]
- Kong, H.; Zhao, Y.; Cao, P.; Luo, J.; Liu, Y.; Qu, H.; Zhang, Y.; Zhao, Y. The Bioactivity of Scutellariae Radix Carbonisata-Derived Carbon Dots: Antiallergic Effect. J. Biomed. Nanotechnol. 2021, 17, 2485–2494. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, S.-Y.; Yang, Y.; Li, Z.-Y. A Review on Charred Traditional Chinese Herbs: Carbonization to Yield a Haemostatic Effect. Pharm. Biol. 2019, 57, 498–506. [Google Scholar] [CrossRef]
- Han, B.; Shen, L.; Xie, H.; Huang, Q.; Zhao, D.; Huang, X.; Chen, X.; Li, J. Synthesis of Carbon Dots with Hemostatic Effects Using Traditional Chinese Medicine as a Biomass Carbon Source. ACS Omega 2023, 8, 3176–3183. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, L.; Li, Q.; Wu, H.; Sun, Z.; Xu, X.; Shi, L.; Sun, Z.; Ma, G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS Appl. Bio Mater. 2023, 6, 3984–4001. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, J.; Ren, J.; Qu, Z.; Zhang, T. Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots. Molecules 2025, 30, 4015. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, S.; Xu, Y.; Chen, X.; Wang, S.; Zhao, P.; Pu, Y.; Ragauskas, A.J. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. ChemSusChem 2022, 15, e202102486. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kong, T.; Xiong, H.-M. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Adv. Mater. 2022, 34, 2200152. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Seivert, O.; Tang, Y.; Karahan, H.E.; Bianco, A. Carbon Dot Synthesis and Purification: Trends, Challenges and Recommendations. Angew. Chem. Int. Ed. 2024, 63, e202412341. [Google Scholar] [CrossRef]
- Pu, S.; Wu, W.; Shi, D.; Dai, Y.; Zhang, J.; Zhao, M.; Liu, S.; Zheng, G.; Wang, X.; Yan, Y.; et al. Functional Nanorealgar Quantum Dots with Aggregation-Induced Emission Enhancement for Tumor Neovascular-Targeted Theranostics. J. Nanomater. 2023, 2023, 6560141. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, J.Z.; Wu, B.; Xu, C.C.; Pang, H.H.; Tu, Q.C.; Lu, Y.Q.; Guo, Q.Y.; Xia, F.; Wang, J.G. Advanced Application of Nanotechnology in Active Constituents of Traditional Chinese Medicines. J. Nanobiotechnol. 2023, 21, 456. [Google Scholar] [CrossRef]
- Karami, M.H.; Pourmadadi, M.; Abdouss, M.; Kalaee, M.R.; Moradi, O.; Rahdar, A.; Diez-Pascual, A.M. Novel Chitosan/γ-Alumina/Carbon Quantum Dot Hydrogel Nanocarrier for Targeted Drug Delivery. Int. J. Biol. Macromol. 2023, 251, 126280. [Google Scholar] [CrossRef]
- Najafi, M.; Pourmadadi, M.; Abdous, M.; Rahdar, A.; Pandey, S. Formulation of Double Nanoemulsions Based on pH-Sensitive Carboxymethyl Cellulose/Starch Copper Doped Carbon Quantum Dots for Quercetin Controlled Release. J. Mol. Liq. 2024, 400, 124543. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, G.; Zhao, R.; Yang, F.; Jiang, X.; Song, S.; Zhang, J.; Shen, H.; Shen, J. Zwitterion-Modified MXene Quantum Dot as a Nanocarrier for Traditional Chinese Medicine Sanguinarine Delivery and Its Application for Photothermal-Chemotherapy Synergistic Antibacterial and Wound Healing. Langmuir 2024, 40, 11381–11389. [Google Scholar] [CrossRef]
- Xia, J.; Wang, J.; Liu, F.; Chen, Z.; Chen, C.; Cheng, X.; Chao, Y.; Wang, Y.; Deng, T. Red/NIR-I-Fluorescence Carbon Dots Based on Rhein with Active Oxygen Scavenging and Colitis Targeting for UC Therapeutics. Adv. Healthc. Mater. 2024, 13, 2304674. [Google Scholar] [CrossRef]






| Types of QDs | Target Compound | Mechanism of Detection | Synthesis Method | Limit of Detection | Reference |
|---|---|---|---|---|---|
| CDs | Hyperin | Photo-induced electron transfer (PET) between hyperin and CQDs | Hydrothermal method | 78.3 nM | [32] |
| Polyaniline-functionalized graphene QD-modified glassy carbon electrodes | Calycosin | QD composite-modified glassy carbon electrodes enhance the electron transfer rate at the sensor surface | Ultrasonic treatment | 9.8 μM | [33] |
| N, S co-doped CDs | Baicalein | Static bursting of CDs with baicalein | Hydrothermal method | 0.21 μM | [34] |
| CDs | Morin | Existing intramolecular filtering effect (IFE) between morin and CDs | Microwave heating method | 0.12 μM | [35] |
| N-CQDs | Myricetin | Existing IFE between myricetin and CQDs | Microwave heating method | 18.4 nM | [36] |
| Molecularly imprinted polymer-modified L-cysteine-modified Mn-doped zinc sulfide QDs | Celastrol | PET occurs between QDs and celastrol | Hydrothermal method | 35.2 nM | [37] |
| QDs modified with beclomethasone nucleic acid aptamers | Beclomethasone | Recovery of burst fluorescence due to competitive binding of beclomethasone to aptamers | Hydrothermal method | 0.1 μM | [38] |
| Molecularly imprinted polymer-modified ratiometric fluorescent probe | Aristolochic acid I | PET between aristolochic acid I and QDs | Solvothermal reaction | 0.45 μM | [39] |
| Molecularly imprinted polymer-modified FeS2 QDs | Aconitine | PET between aconitine and ratiometric fluorescent sensors | Solvothermal reaction | 24 nM | [40] |
| SiO2-encapsulated green perovskite quantum dots and red perovskite quantum dots loaded with MIPs forming dual-quantum dot nanospheres | Rhein | Rheum emodin interacts with composite materials to form new complexes, triggering static quenching | Hot injection method | 1.90 nM | [41] |
| CQD-Ru/multi-walled carbon nanotubes | Kaempferol | Specific binding of Kaempferol to composite materials | Hydrothermal method | 24 nM | [42] |
| Detection Mechanism | Type of QDs | Target Analyte | Pollutant Category | Core Principle | Reference |
|---|---|---|---|---|---|
| Enzyme Inhibition | SiQDs | Methyl parathion | Pesticide Residue | Based on the inhibition of tyrosinase by methyl parathion, preventing dopamine generation and thereby affecting QD fluorescence. | [46] |
| Direct Interaction | TGA@Mn-ZnS QDs | Cypermethrin | Pesticide Residue | Pesticide forms ester adducts with carboxyl groups on the QD surface, leading to fluorescence quenching. | [49] |
| Competitive Binding/FRET | CdTe@ZnS QDs | Chlorpyrifos | Pesticide Residue | Degradation products of the pesticide displace DZ on the QD surface, disrupting FRET and restoring the QD fluorescence quenched by DZ. | [50] |
| Aptamer Recognition | GQDs | Acetamiprid | Pesticide Residue | Binding of the aptamer to the pesticide causes separation of the complementary strand, inducing changes in the QD signal. | [54] |
| Aptamer Recognition | Nitrogen-doped carbon dots (N-CDs) | Cd2+ | Heavy Metal Ion | Binding of the aptamer to Cd2+ causes fluorescence quenching. | [63] |
| Direct Interaction | CDs | Hg2+ | Heavy Metal Ion | Hg2+ binding to surface carboxyl groups causes QD aggregation and electron transfer, leading to quenching. | [64] |
| Aptamer Recognition | Ag2S QDs | Zearalenone | Mycotoxin | The specific binding of aptamers and toxins blocks electron transfer from ascorbic acid (AA) to the Bi2S3/BiOCl-Ag2S composite, decreasing photocurrent. | [61] |
| Antibody Recognition | ZnCdS@ZnS QDs | Aflatoxin B1 | Mycotoxin | QDs generate excited states (QDs*) via electron transfer, producing ECL emissions. Steric hindrance from AFB1 binding decreases the conductivity of the modified electrode. | [72] |
| Dispersion and Electron Transfer | Boron-doped graphene quantum dots (B-GQDs) | Phthalate esters | Plasticizer | Plasticizers affect the dispersion stability of B-doped graphene QDs in different solutions, accompanied by changes in their fluorescence signal. | [75] |
| Indirect Interaction | N-CDs | Sulfite | SO2 Derivative | Redox reaction between Cr(VI) and HSO3− reduces Cr(VI) to Cr(III), inhibiting the inner filter effect (IFE) caused by Cr(VI) and restoring QD fluorescence. | [76] |
| Direct Interaction | MNP-SiO2-CdTe QDs | Enrofloxacin, etc. | Antibiotics | FRET and electron transfer. | [80] |
| Photocatalytic Material | Pollutants | Results of the Study | Light Source Type | Reference |
|---|---|---|---|---|
| Polyethyleneimine and polyethylene glycol-modified GQD | Methylene blue (MB) | Almost completely degraded after 4 h of irradiation | 300 W Xe lamp | [88] |
| Perovskite QDs | Methyl orange | QDs can decompose the MO solution into a colorless solution within 100 min | Visible-light irradiation | [89] |
| BNQD-modified bisphenol S-doped g-C3N4 nanosheets | Sulfadimethoxine | 100% degradation efficiency in 60 min | 300 W Xe lamp | [85] |
| Cu-doped CQDs loaded on two-dimensional Ni-MOL (one of MOF, Ni-metal organic framework) to construct novel two-dimensional photocatalysts | Tetracycline | The degradation rate reached about 93.5% within 60 min under visible-light irradiation | 300 W Xe lamp | [90] |
| CdTe/ZnSe core–shell QDs were synthesized successfully by ultrafast, one-pot, and simple microwave method in aqueous media | Methylene orange (MO) | The degradation rates of MO under UV light irradiation were 79% and 70% | UV and daylight simulation lamps | [91] |
| SnO2 QDs were prepared from SnCl2-2H2O in aqueous solution using SnCl2-2H2O as a raw material and CH4N2S as a catalyst | Octane | Under optimal conditions, 91.9% of the octane was degraded after 48 h of light exposure | 150 W high-pressure mercury lamp | [92] |
| Sulfur-doped graphene quantum dots (SG-QDs) were first stabilized on the surface of ZnS semiconductor nanoparticles to construct the core–shell structure ZnS-SG QDs, and then modified with Ag2S nanoparticles | Diazinon | Degradation of more than 99% of diazinon in 60 min | 60 W LED lamp | [93] |
| Construction of photo-Fenton reaction systems by modifying N-CQD on the surface of supramolecularly self-assembled carbon nitride and introducing Fe ions into the planar structure of carbon nitride | Ciprofloxacin (CIP) | 76% degradation of CIP in 120 min | 300 W Xe lamp | [94] |
| CdS QDs stabilized with 4-(2,2:6′,2-bis(terpyridinyl)-4′-yl)benzoic acid were loaded onto the surface of zeolitic imidazole skeleton | Arsenicals | Degradation of 93.12% arsenicals in 90 min under alkaline conditions | 35 W LED lamp | [95] |
| Green synthesis of N-CQDs from citrus peels using microwave-assisted methods | Chlorpyrifos | 91% chlorpyrifos degradation in 70 min | Daylighting (11:00 a.m. to 2:30 p.m.) | [96] |
| Construction of CDBHCF nanocomposites by anchoring carbon dots (CDs) and cobalt ferrite (CF) particles to boehmite (BH) | Tetracycline | 92% degradation in 120 min under visible light | 150 W Xe lamp | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Yang, F.; Xu, J.; Zeng, F. Application of Quantum Dots in Chinese Herbal Medicines: Advances in Detection, Pollutant Degradation, and Pharmacological Enhancement. Sensors 2025, 25, 7161. https://doi.org/10.3390/s25237161
Zhou D, Yang F, Xu J, Zeng F. Application of Quantum Dots in Chinese Herbal Medicines: Advances in Detection, Pollutant Degradation, and Pharmacological Enhancement. Sensors. 2025; 25(23):7161. https://doi.org/10.3390/s25237161
Chicago/Turabian StyleZhou, Delai, Fude Yang, Jian Xu, and Fankui Zeng. 2025. "Application of Quantum Dots in Chinese Herbal Medicines: Advances in Detection, Pollutant Degradation, and Pharmacological Enhancement" Sensors 25, no. 23: 7161. https://doi.org/10.3390/s25237161
APA StyleZhou, D., Yang, F., Xu, J., & Zeng, F. (2025). Application of Quantum Dots in Chinese Herbal Medicines: Advances in Detection, Pollutant Degradation, and Pharmacological Enhancement. Sensors, 25(23), 7161. https://doi.org/10.3390/s25237161

