Stiffness Separation Method for Damage Identification in Continuous Rigid Frame Bridges
Abstract
1. Introduction
2. Stiffness Separation Method
3. Damage Identification in CRF Bridges
3.1. Four-Span CRF Bridge
3.2. Twelve-Span CRF Bridge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Barone, G.; Smith, A. A novel multi-level data fusion and anomaly detection approach for infrastructure damage identification and localisation. Eng. Struct. 2023, 292, 116473. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Liu, Y.; Cao, Y. Seismic fragility analysis of long-span rigid-frame bridge on mountainous soft clay site. Adv. Bridge Eng. 2024, 5, 25. [Google Scholar] [CrossRef]
- Zhan, Y.; Fan, Z.; Huang, Y.; Zhang, Z.; Shao, J.; An, J. Study on shrinkage and creep effect of steel truss-stiffened continuous rigid frame bridge considering variable temperature and relative humidity. Structures 2024, 61, 106120. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, J.; Hu, J.; Ye, Z.; Deng, Z.; Wan, N. Nonlinear modeling of temperature-induced bearing displacement of long-span single-pier rigid frame bridge based on DCNN-LSTM. Case Stud. Therm. Eng. 2024, 53, 103897. [Google Scholar] [CrossRef]
- Yang, S.I.; Frangopol, D.M.; Neves, L.C. Service life prediction of structural systems using lifetime functions with emphasis on bridges. Reliab. Eng. Syst. Saf. 2004, 86, 39–51. [Google Scholar] [CrossRef]
- Feng, D.; Sun, H.; Feng, M.Q. Simultaneous identification of bridge structural parameters and vehicle loads. Comput. Struct. 2015, 157, 76–88. [Google Scholar] [CrossRef]
- Wang, Q.A.; Chen, J.; Ni, Y.; Xiao, Y.; Liu, N.; Liu, S.; Feng, W.S. Application of Bayesian networks in reliability assessment: A systematic literature review. Structures 2025, 71, 108098. [Google Scholar] [CrossRef]
- Wang, Q.A.; Dai, Y.; Ma, Z.G.; Ni, Y.Q.; Tang, J.Q.; Xu, X.Q.; Wu, Z.Y. Towards probabilistic data-driven damage detection in SHM using sparse Bayesian learning scheme. Struct. Control. Health Monit. 2022, 29, e3070. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, X.; Lu, H.; Xue, S.; Wang, R.; Zhang, Y. Indirect Approach to Identify Girder Bridge Element Stiffness Based on Blind Source Separation. Symmetry 2022, 14, 1963. [Google Scholar] [CrossRef]
- Ren, W.X.; De Roeck, G. Structural Damage Identification using Modal Data. I: Simulation Verification. J. Struct. Eng. 2002, 128, 87–95. [Google Scholar] [CrossRef]
- Pooya, S.M.H.; Massumi, A. A novel damage detection method in beam-like structures based on the relation between modal kinetic energy and modal strain energy and using only damaged structure data. J. Sound Vib. 2022, 530, 116943. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G. A moving-window least squares fitting method for crack detection and rigidity identification of multispan bridges. Struct. Control. Health Monit. 2013, 20, 387–404. [Google Scholar] [CrossRef]
- Santos, A.; Figueiredo, E.; Silva, M.; Santos, R.; Sales, C.; Costa, J.C.W.A. Genetic-based EM algorithm to improve the robustness of Gaussian mixture models for damage detection in bridges. Struct. Control. Health Monit. 2017, 24, e1886. [Google Scholar] [CrossRef]
- Silva, M.; Santos, A.; Figueiredo, E.; Santos, R.; Sales, C.; Costa, J.C.W.A. A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng. Appl. Artif. Intell. 2016, 52, 168–180. [Google Scholar] [CrossRef]
- Wang, Q.A.; Liu, Q.; Ma, Z.G.; Wang, J.F.; Ni, Y.Q.; Ren, W.X.; Wang, H.B. Data interpretation and forecasting of SHM heteroscedastic measurements under typhoon conditions enabled by an enhanced Hierarchical sparse Bayesian Learning model with high robustness. Measurement 2024, 230, 114509. [Google Scholar] [CrossRef]
- Lu, Z.R.; Zhu, J.J.; Ou, Y.J. Structural damage identification using incomplete static displacement measurement. Struct. Eng. Mech. 2017, 63, 251–257. [Google Scholar] [CrossRef]
- Sanayei, M.; Phelps, J.E.; Sipple, J.D.; Bell, E.S.; Brenner, B.R. Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge Evaluation Using Strain Measurements. J. Bridge Eng. 2012, 17, 130–138. [Google Scholar] [CrossRef]
- Sanayei, M.; Khaloo, A.; Gul, M.; Catbas, F.N. Automated finite element model updating of a scale bridge model using measured static and modal test data. Eng. Struct. 2015, 102, 66–79. [Google Scholar] [CrossRef]
- Banan, M.R.; Hjelmstad, K.D. Parameter Estimation of Structures from Static Response. I. Computational Aspects. J. Struct. Eng. 1994, 120, 3243–3258. [Google Scholar] [CrossRef]
- Banan, M.; Hjelmstad, K. Parameter Estimation of Structures from Static Response. II: Numerical Simulation Studies. J. Struct. Eng. 1994, 120, 3259–3283. [Google Scholar] [CrossRef]
- Hjelmstad, K.D.; Shin, S. Damage Detection and Assessment of Structures from Static Response. J. Eng. Mech. 1997, 123, 568–576. [Google Scholar] [CrossRef]
- Fernandez-Navamuel, A.; Zamora-Sánchez, D.; Omella, Á.J.; Pardo, D.; Garcia-Sanchez, D.; Magalhães, F. Supervised Deep Learning with Finite Element simulations for damage identification in bridges. Eng. Struct. 2022, 257, 114016. [Google Scholar] [CrossRef]
- Le, N.T.; Thambiratnam, D.P.; Nguyen, A.; Chan, T.H.T. A new method for locating and quantifying damage in beams from static deflection changes. Eng. Struct. 2019, 180, 779–792. [Google Scholar] [CrossRef]
- Wu, B.; Lu, H.; Chen, B.; Gao, Z. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors. Sensors 2017, 17, 1657. [Google Scholar] [CrossRef]
- Cheng, X.X.; Liao, Y.C. Structural safety assessment oriented modal experiments on Renyihe Bridge using vehicle excitations. Structures 2023, 56, 105016. [Google Scholar] [CrossRef]
- Zhang, J.; Maes, K.; Roeck, G.D.; Lombaert, G. Model updating for a large multi-span quasi-periodic viaduct based on free wave characteristics. J. Sound Vib. 2021, 506, 116161. [Google Scholar] [CrossRef]
- Deng, T.; Huang, J.; Cao, M.; Li, D.; Bayat, M. Seismic Damage Identification Method for Curved Beam Bridges Based on Wavelet Packet Norm Entropy. Sensors 2021, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Niu, J. Damage identification method of girder bridges based on finite element model updating and modal strain energy. Sci. China Technol. Sci. 2015, 58, 701–711. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Ma, M.; Yang, F.; Song, S. Bridge Damage Identification Based on Encoded Images and Convolutional Neural Network. Buildings 2024, 14, 3104. [Google Scholar] [CrossRef]
- Xiao, F.; Hulsey, J.L.; Chen, G.S.; Xiang, Y. Optimal static strain sensor placement for truss bridges. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717707929. [Google Scholar] [CrossRef]
- Xiao, F.; Sun, H.; Mao, Y.; Chen, G.S. Damage identification of large-scale space truss structures based on stiffness separation method. Structures 2023, 53, 109–118. [Google Scholar] [CrossRef]
- Xiao, F.; Mao, Y.; Sun, H.; Chen, G.S.; Tian, G. Stiffness Separation Method for Reducing Calculation Time of Truss Structure Damage Identification. Struct. Control. Health Monit. 2024, 2024, 5171542. [Google Scholar] [CrossRef]
- Xiao, F.; Mao, Y.; Tian, G.; Chen, G.S. Partial-Model-Based Damage Identification of Long-Span Steel Truss Bridge Based on Stiffness Separation Method. Struct. Control. Health Monit. 2024, 2024, 5530300. [Google Scholar] [CrossRef]
- Lee, K.; Jeong, S.; Sim, S.H.; Shin, D.H. Damage-Detection Approach for Bridges with Multi-Vehicle Loads Using Convolutional Autoencoder. Sensors 2022, 22, 1839. [Google Scholar] [CrossRef] [PubMed]
- Schlune, H.; Plos, M.; Gylltoft, K. Improved bridge evaluation through finite element model updating using static and dynamic measurements. Eng. Struct. 2009, 31, 1477–1485. [Google Scholar] [CrossRef]
- Akbari, R. Seismic fragility analysis of reinforced concrete continuous span bridges with irregular configuration. Struct. Infrastruct. Eng. 2012, 8, 873–889. [Google Scholar] [CrossRef]
- Maalek, S.; Akbari, R.; Maheri, M.R. The effect of higher modes on the regularity of single-column-bent highway viaducts. Bridge Struct. 2009, 5, 29–43. [Google Scholar] [CrossRef]
- Wang, P.C.; Shoup, T.E. Parameter sensitivity study of the Nelder–Mead Simplex Method. Adv. Eng. Softw. 2011, 42, 529–533. [Google Scholar] [CrossRef]
- McKinnon, K.I.M. Convergence of the Nelder--Mead Simplex Method to a Nonstationary Point. SIAM J. Optim. 1998, 9, 148–158. [Google Scholar] [CrossRef]
















| Name | Length (m) | Spans | Country |
|---|---|---|---|
| Quanzhou Bay sea-crossing Bridge | 4340 | 62 | China |
| Confederation Bridge | 11,080 | 45 | Canada |
| Quhai rigid frame Bridge | 768.6 | 29 | China |
| US-24 Viaduct | 378.9 | 17 | USA |
| Río Nalón Viaduct | 1100.85 | 17 | Spain |
| Stana Clara Bridge | 500.06 | 12 | USA |
| Xilamulun River Bridge | 1460 | 9 | China |
| Wenming Bridge | 852 | 8 | China |
| Aigawa Bridge | 636 | 8 | Japan |
| Renyi River Bridge | 740 | 6 | China |
| Substructure | Damage Parameters | Degree of Damage |
|---|---|---|
| 1 | 3%, 8%, 12% | |
| 2 | 10%, 3%, 14% | |
| 3 | 8%, 14%, 5% | |
| 4 | 12%, 10%, 5% |
| Damage Scenario | Damage Parameters | Degree of Damage |
|---|---|---|
| 1 | 8%, 5%, 3% | |
| 2 | 3%, 8%, 15% | |
| 3 | 10%, 3%, 12% | |
| 4 | 15%, 12%, 8% | |
| 5 | 12%, 15%, 3% |
| Error Level | 0.2% | 0.5% | 1% | 2% |
|---|---|---|---|---|
| Four-span bridge | 0.25% | 0.63% | 1.26% | 2.48% |
| Twelve-span bridge | 0.33% | 0.82% | 1.63% | 3.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Xu, L.; Yan, Y.; Xiang, Y. Stiffness Separation Method for Damage Identification in Continuous Rigid Frame Bridges. Sensors 2025, 25, 7141. https://doi.org/10.3390/s25237141
Xiao F, Xu L, Yan Y, Xiang Y. Stiffness Separation Method for Damage Identification in Continuous Rigid Frame Bridges. Sensors. 2025; 25(23):7141. https://doi.org/10.3390/s25237141
Chicago/Turabian StyleXiao, Feng, Linger Xu, Yu Yan, and Yujiang Xiang. 2025. "Stiffness Separation Method for Damage Identification in Continuous Rigid Frame Bridges" Sensors 25, no. 23: 7141. https://doi.org/10.3390/s25237141
APA StyleXiao, F., Xu, L., Yan, Y., & Xiang, Y. (2025). Stiffness Separation Method for Damage Identification in Continuous Rigid Frame Bridges. Sensors, 25(23), 7141. https://doi.org/10.3390/s25237141

