A Novel Multi-Source Image Registration of Porcine Body for Multi-Feature Detection
Highlights
- A novel main orientation representation algorithm of feature points is presented for visible and infrared porcine body images.
- A novel visible and infrared porcine body image registration model is constructed to enhance registration accuracy in variable illumination conditions.
- The visible and infrared porcine body image registration method can achieve a lower average root-mean-square error than current registration algorithms.
Abstract
1. Introduction
- A novel main orientation representation algorithm of feature points is presented for visible and infrared porcine body images.
- A novel visible and infrared porcine body image registration model is constructed to enhance registration accuracy in variable illumination conditions.
- The visible and infrared porcine body image registration method can achieve a lower average root-mean-square error than current registration algorithms.
2. Materials and Methods
2.1. Multi-Source Porcine Body Image Registration
2.1.1. Gabor-Ordinal-Based Contour Angle Orientation
2.1.2. Multi-Source Porcine Body Feature Rough to Fine Registration
2.2. Porcine Body Multi-Feature Representation
3. Results
3.1. Comparisons of Main Orientation
3.2. The Registration Performance of the Proposed Method
3.3. The Porcine Body Multi-Feature Representation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhoj, S.; Tarafdar, A.; Chauhan, A.; Singh, M.; Gaur, G.K. Image processing strategies for pig liveweight measurement: Updates and challenges. Comput. Electron. Agric. 2022, 193, 106693. [Google Scholar] [CrossRef]
- Gosztolai, A.; Günel, S.; Lobato-Ríos, V. LiftPose3D: A deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals. Nat. Methods 2021, 18, 975–981. [Google Scholar] [CrossRef]
- Rueegg, N.; Zuffi, S.; Schindler, K.; Black, M.J. BARC: Learning to regress 3D dog shape from images by exploiting breed information. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3876–3884. [Google Scholar]
- Marshall, J.D.; Li, T.; Wu, J.H.; Dunn, T.W. Leaving flatland: Advances in 3D behavioral measurement. Curr. Opin. Neurobiol. 2022, 73, 102522. [Google Scholar] [CrossRef]
- Kalantar, B.; Mansor, S.B.; Halin, A.A.; Shafri, H.; Zand, M. Multiple moving object detection from uav videos using trajectories of matched regional adjacency graphs. IEEE Trans. Geoence Remote Sens. 2017, 55, 5198–5213. [Google Scholar] [CrossRef]
- Yang, T.; Tang, Q.; Li, L.; Song, J.; Zhu, C.; Tang, L. Nonrigid registration of medical image based on adaptive local structure tensor and normalized mutual information. J. Appl. Clin. Med. Phys. 2019, 20, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Kybic, J.; Unser, M. Fast parametric elastic image registration. IEEE Trans. Image Process. 2003, 12, 1427–1442. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, J.; Zhang, J.; Wang, Q.; Yap, P.T.; Shen, D. Deformable Image Registration Using a Cue-Aware Deep Regression Network. IEEE Trans. Biomed. Eng. 2018, 65, 1900–1911. [Google Scholar] [CrossRef] [PubMed]
- Photiou, C.; Pitris, C. Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation. J. Biomed. Opt. 2019, 24, 106001. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Song, Z. Multi-modal image registration based on multi-feature mutual information. J. Med. Imaging Health Inform. 2019, 9, 153–158. [Google Scholar] [CrossRef]
- Zou, B.; He, Z.; Zhao, R.; Zhu, C.; Liao, W.; Li, S. Non-rigid retinal image registration using an unsupervised structure-driven regression network. Neurocomputing 2020, 404, 14–25. [Google Scholar] [CrossRef]
- Yu, K.; Ma, J.; Hu, F.; Ma, T.; Fang, B. A grayscale weight with window algorithm for infrared and visible image registration. Infrared Phys. Technol. 2019, 99, 178–186. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Q.; Cheng, Y.; Yan, F.; Yu, Q. A robust deformed image matching method for multi-source image matching. Infrared Phys. Technol. 2021, 115, 103691. [Google Scholar] [CrossRef]
- Chang, H.H.; Wu, G.L.; Chiang, M.H. Remote sensing image registration based on modified sift and feature slope grouping. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1363–1367. [Google Scholar] [CrossRef]
- Safdari, M.; Moallem, P.; Satari, M. SIFT Detector Boosted by Adaptive Contrast Threshold to Improve Matching Robustness of Remote Sensing Panchromatic Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 675–684. [Google Scholar] [CrossRef]
- Lam, S.K.; Jiang, G.Y.; Wu, M.Q.; Cao, B. Area-time efficient streaming architecture for fast and brief detector. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 282–286. [Google Scholar] [CrossRef]
- Hassanin, A.; El-Samie, F.; Banby, G. A real-time approach for automatic defect detection from pcbs based on surf features and morphological operations. Multimed. Tools Appl. 2019, 78, 34437–34457. [Google Scholar] [CrossRef]
- Sedaghat, A.; Mohammadi, N. High-resolution image registration based on improved SURF detector and localized GTM. Int. J. Remote Sens. 2019, 40, 2576–2601. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, G.; Xu, M. Image copy-move forgery detection algorithm based on ORB and novel similarity metric. IET Image Process. 2020, 14, 2092–2100. [Google Scholar] [CrossRef]
- Du, Q.; Fan, A.; Ma, Y.; Fan, F.; Mei, X. Infrared and visible image registration based on scale-invariant piifd feature and locality preserving matching. IEEE Access 2018, 6, 64107–64121. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Y.; Yan, Y.; Deng, J.; Jiang, X. A contour angle orientation for power equipment infrared and visible image registration. IEEE Trans. Power Deliv. 2021, 36, 2559–2569. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Dai, J.; Cavichini, M.; Bartsch, D.U.G.; Freeman, W.R.; An, C. Two-step registration on multi-modal retinal images via deep neural networks. IEEE Trans. Image Process. 2021, 31, 823–838. [Google Scholar] [CrossRef]
- Zhong, Z.; Gao, W.; Khattak, A.M.; Wang, M. A novel multi-source image fusion method for pig-body multi-feature detection in NSCT domain. Multimed. Tools Appl. 2020, 79, 26225–26244. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, M.; Gao, W.; Zheng, L. A novel multisource pig-body multifeature fusion method based on gabor features. Multidimens. Syst. Signal Process. 2021, 32, 381–404. [Google Scholar] [CrossRef]
- Chen, H.X.; Yung, N.H. Corner detector based on global and local curvature properties. Opt. Eng. 2008, 47, 057008. [Google Scholar] [CrossRef]
- Chen, J.; Tian, N.; Lee, J.; Zheng, R.T.S.; Laine, A.F. A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 2010, 57, 1707–1718. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Zhong, Z.; Yang, J. A Novel Pig-body Multi-feature Representation Method Based on Multi-source Image Fusion. Measurement 2022, 204, 111968. [Google Scholar] [CrossRef]
- Li, L.Z.; Han, L.; Ding, M.T.; Cao, H.Y. Multimodal image fusion framework for end-to-end remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5607214. [Google Scholar] [CrossRef]
- Tang, C.; Tian, G.Y.; Chen, X.; Wu, J.; Li, K.; Meng, H. Infrared and visible images registration with adaptable local-global feature integration for rail inspection. Infrared Phys. Technol. 2017, 87, 31–39. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Ma, Y.; Zhao, L.; Chen, S. A high precision feature matching method based on geometrical outlier removal for remote sensing image registration. IEEE Access 2019, 7, 180027–180038. [Google Scholar] [CrossRef]
- Gao, J.; Cai, X.F. Image matching method based on multi-scale corner detection. In Proceedings of the 2017 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, China, 15–18 December 2017; pp. 125–129. [Google Scholar]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Nemalidinne, S.M.; Gupta, D. Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering. Fire Saf. J. 2018, 101, 84–101. [Google Scholar] [CrossRef]
- Zhong, Z. A novel visible and infrared image fusion method based on convolutional neural network for pig-body feature detection. Multimed. Tools Appl. 2022, 81, 2757–2775. [Google Scholar] [CrossRef]
- Zhang, W.; Shan, S.; Chen, X.; Gao, W. Local gabor binary patterns based on mutual information for face recognition. Int. J. Image Graph. 2007, 7, 777–793. [Google Scholar] [CrossRef]


















| Technical Indicators | Descriptions | Technical Indicators | Descriptions |
|---|---|---|---|
| Resolution of infrared images | 80 × 60 ppi | Resolution of visible images | 640 × 480 ppi |
| Measuring temperature range | −10–+150 °C | Focus form | Fixed focus |
| Precision | Error is 2% |
| Registration Methods | ||||||
|---|---|---|---|---|---|---|
| SIFT-LPM | SI-PIIFD-LPM | EG-SURF-RANSAC | CAO-C2F | Dense | Proposed | |
| Time(s) | 3.752 | 2.531 | 2.354 | 1.347 | 1.263 | 2.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Z.; Zhi, S. A Novel Multi-Source Image Registration of Porcine Body for Multi-Feature Detection. Sensors 2025, 25, 6918. https://doi.org/10.3390/s25226918
Zhong Z, Zhi S. A Novel Multi-Source Image Registration of Porcine Body for Multi-Feature Detection. Sensors. 2025; 25(22):6918. https://doi.org/10.3390/s25226918
Chicago/Turabian StyleZhong, Zhen, and Shengfei Zhi. 2025. "A Novel Multi-Source Image Registration of Porcine Body for Multi-Feature Detection" Sensors 25, no. 22: 6918. https://doi.org/10.3390/s25226918
APA StyleZhong, Z., & Zhi, S. (2025). A Novel Multi-Source Image Registration of Porcine Body for Multi-Feature Detection. Sensors, 25(22), 6918. https://doi.org/10.3390/s25226918
