Wide-Area Visual Monitoring System Based on NB-IoT
Highlights
- The system detects abnormal events by analyzing sequential image frames using intelligent algorithms and stores images only upon anomaly detection, improving storage efficiency.
- By using the CoAP protocol to transmit encapsulated JPEG images and leveraging the MQTT protocol to deliver image data to client applications, the system achieves efficient data transmission and processing.
- This study offers an intelligent, scalable, and responsive solution for wide-area surveillance systems, overcoming limitations of traditional systems such as low storage efficiency, limited transmission range, and complex operation.
- The intelligent anomaly detection algorithms reduce the risks and costs associated with manual monitoring, enhancing both the efficiency and accuracy of anomaly detection.
Abstract
1. Introduction
2. Related Work
3. System Design
3.1. Subsection
3.2. System Perception Layer
3.2.1. Hardware Architecture of the System Perception Layer
3.2.2. Design of the Hardware Circuitry for the Perception Layer
3.2.3. Design of Image Encoding
3.3. Design of the System Service Layer
3.3.1. Design of Image Decoding
3.3.2. NB-IoT Communication Process
3.3.3. Transparent Transmission Principle Based on CoAP Protocol
3.4. Design of the System Network Application Layer
3.4.1. Database Construction
3.4.2. Image Processing Algorithms Design
4. System Testing and Analysis
4.1. Image Transmission Success Rate Testing and Analysis
4.2. Server Load Balancing Testing and Analysis
4.3. Testing and Analysis of Accuracy in Identifying Anomalous Images
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, H.; Kim, H.; Kim, D.; Kim, J. PASS-CCTV: Proactive Anomaly surveillance system for CCTV footage analysis in adverse environmental conditions. Expert Syst. Appl. 2024, 254, 124391. [Google Scholar] [CrossRef]
- Balsa, J.; Fresnedo, Ó.; García-Naya, J.A.; Domínguez-Bolaño, T.; Castedo, L. JSCC-Cast: A Joint Source Channel Coding Video Encoding and Transmission System with Limited Digital Metadata. Sensors 2021, 21, 6208. [Google Scholar] [CrossRef]
- Sato, T.; Katsuyama, Y.; Qi, X.; Wen, Z.; Tamesue, K.; Kameyama, W.; Nakamura, Y.; Katto, J.; Sato, T. Compensation of Communication Latency in Remote Monitoring Systems by Video Prediction. IEICE Trans. Commun. 2024, E107-B, 945–954. [Google Scholar] [CrossRef]
- Enides, S. Unlock New Possibilities with IP-Based Video Surveillance Systems. Available online: https://qgis.org/ (accessed on 1 May 2022).
- Pradhan, G.; Prusty, M.R.; Negi, V.S.; Chinara, S. Advanced IoT-integrated parking systems with automated license plate recognition and payment management. Sci. Rep. 2025, 15, 2388. [Google Scholar] [CrossRef]
- Chuanhui, Z.; Zihao, W.; Zhiming, Z.; Jichang, G. Research on pipeline intelligent welding based on combined line structured lights vision sensing: A partitioned time–frequency-space image processing algorithm. Int. J. Adv. Manuf. Technol. 2024, 134, 5463–5479. [Google Scholar] [CrossRef]
- Iftikhar, K.; Anwar, S.; Khan, M.T.; Djawad, Y.A. An Intelligent Automatic Fault Detection Technique Incorporating Image Processing and Fuzzy Logic. J. Phys. Conf. Ser. 2019, 1244, 012035. [Google Scholar] [CrossRef]
- Mudita; Deepali, G. A Comprehensive Study of Recommender Systems for the Internet of Things. J. Phys. Conf. Series. 2021, 1969, 012045. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H. Design of smart city environment monitoring and optimisation system based on NB-IoT technology. Int. J. Inf. Commun. Technol. 2024, 25, 47–61. [Google Scholar] [CrossRef]
- Siva Balan, R.V.; Gouri, M.S.; Senthilnathan, T.; Gondkar, S.R.; Gondar, R.R.; Loveline, Z.J.; Jothikumar, R. Development of smart energy monitoring using NB-IOT and cloud. Meas. Sens. 2023, 29, 100884. [Google Scholar] [CrossRef]
- Sanz, E.; Trincado, J.; Martínez, J.; Payno, J.; Morante, O.; Almeida-Ñaulay, A.F.; Berlanga, A.; Molina, J.M.; Zubelzu, S.; Patricio, M.A. Cloud-based system for monitoring event-based hydrological processes based on dense sensor network and NB-IoT connectivity. Environ. Model. Softw. 2024, 182, 106186. [Google Scholar] [CrossRef]
- Lin, J.; Xu, X. Design of a textile storage environment fire detection system based on ZigBee and NB-IoT. J. Phys. Conf. Ser. 2024, 2797, 012031. [Google Scholar] [CrossRef]
- Yan, Q.; Guo, D.; Chen, N.; Lv, X.; Li, S. Design of NB-IoT based Portable pH Detecto. J. Phys. Conf. Ser. 2025, 2975, 012021. [Google Scholar] [CrossRef]
- Liu, T.; Qin, F. Study on Industrial Wastewater Pollution Monitoring Technology Based on NB-IoT Wireless Communication Technology. Int. J. Grid High Perform. Comput. 2025, 17, 1–20. [Google Scholar] [CrossRef]
- Mai, Y.; Li, M.; Pei, Y.; Wu, H.; Su, Z. Research and Design of an Intelligent Street Lamp Control System Based on NB-IoT. Autom. Control. Comput. Sci. 2024, 58, 78–89. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, X.; Lin, L.; Dong, C.; Zhang, L. Monitoring routing status of UAV networks with NB-IoT. J. Supercomput. 2023, 79, 19064–19094. [Google Scholar] [CrossRef]
- Ada, F.; Giacomo, P.; Alessandro, P. Quasi-real time remote video surveillance unit for lorawan-based image transmission. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 588–593. [Google Scholar]
- Dhou, S.; Alnabulsi, A.; Al-Ali, A.R.; Arshi, M.; Darwish, F.; Almaazmi, S.; Alameeri, R. An IoT Machine Learning-Based Mobile Sensors Unit for Visually Impaired People. Sensors 2022, 22, 5202. [Google Scholar] [CrossRef]
- Pronello, C.; Garzón Ruiz, X.R. Evaluating the performance of video-based automated passenger counting systems in real-world conditions: A comparative study. Sensors 2023, 23, 7719. [Google Scholar] [CrossRef]
- Munteanu, D.; Moina, D.; Zamfir, C.G.; Petrea, S.M.; Cristea, D.S.; Munteanu, N. Sea Mine Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models. Sensors 2022, 22, 9536. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, J.; Xian, W.; Wei, X.; Liao, X. Efficient Access Control for Video Anomaly Detection Using ABE-Based User-Level Revocation with Ciphertext and Index Updates. Appl. Sci. 2025, 15, 5128. [Google Scholar] [CrossRef]
- Cai, F.F.Z.; Jiang, C.Q.; Cheung, R.C.C.; Lam, A.H.F. An AIoT LoRaWAN Control System With Compression and Image Recovery Algorithm (CIRA) for Extreme Weather. IEEE Internet Things J. 2024, 11, 32701–32713. [Google Scholar] [CrossRef]
- Magaia, N.; Gomes, P.; Silva, L.; Sousa, B.; Mavromoustakis, C.X.; Mastorakis, G. Development of Mobile IoT Solutions: Approaches, Architectures, and Methodologies. IEEE Internet Things J. 2021, 8, 16452–16472. [Google Scholar] [CrossRef]
- Benbuk, A.A.; Kouzayha, N.; Costantine, J.; Dawy, Z. Charging and Wake-Up of IoT Devices using Harvested RF Energy with Near-Zero Power Consumption. IEEE Internet Things Mag. 2023, 6, 162–167. [Google Scholar] [CrossRef]
- Wei, Z. The design of library database management system based on MySQL. Appl. Comput. Eng. 2024, 38, 41–50. [Google Scholar] [CrossRef]
- Zhang, W. Greenhouse monitoring system integrating NB-IOT technology and a cloud service framework. Nonlinear Eng. 2024, 13, 20240053. [Google Scholar] [CrossRef]
- Lin, J.-C. NB-IoT Physical Random Access Channels (NPRACHs) With Intercarrier Interference (ICI) Reduction. IEEE Internet Things J. 2023, 11, 5427–5438. [Google Scholar] [CrossRef]
- Dumay, M.; Hassan, H.A.H.; Surbayrole, P.; Artis, T.; Barthel, D.; Pelov, A. Enabling Extremely Energy-Efficient End-to-End Secure Communications for Smart Metering Internet of Things Applications Using Static Context Header Compression. Appl. Sci. 2023, 13, 11921. [Google Scholar] [CrossRef]
- Han, C.; Zhang, W.; Li, M.; Tian, Y. Design of Smart Home System Based on Nb-Iot. J. Phys. Conf. Ser. 2022, 2254, 012039. [Google Scholar] [CrossRef]
- Ou, G.; Chen, Y.; Han, Y.; Sun, Y.; Zheng, S.; Ma, R. Design and Experiment of an Internet of Things-Based Wireless System for Farmland Soil Information Monitoring. Agriculture 2025, 15, 467. [Google Scholar] [CrossRef]
- Wei, W.; Tang, M.; Liu, J. A Method for FM Signal Localization Based on Wavelet Transform and Swin Transformer. In Proceedings of the 2024 2nd International Conference on Artificial Intelligence and Automation Control (AIAC), Guangzhou, China, 20–22 December 2024; pp. 356–364. [Google Scholar]
- Yue, Z.; Linwei, T. Multi-Channel Data Acquisition System Based on FPGA and STM32. J. Northwestern Polytech. Univ. 2020, 38, 351–358. [Google Scholar]
- Zhang, Y.; Li, H.; Zuo, Y.; Li, J.; Meng, S.; Ren, Y. Design of intelligent vehicle for thermal engine power based on OPENMV. In Proceedings of the Third International Conference on Intelligent Mechanical and Human-Computer Interaction Technology (IHCIT 2024), Hangzhou, China, 5–7 July 2024; pp. 8–90. [Google Scholar]
- Enhao, T.; Tong, L.; Kaijun, F.; Junhao, F. Research on Video Image Transmission Method Based on FPGA. IOP Conf. Ser. Mater. Sci. Eng. 2023, 382, 042031. [Google Scholar]
- Chatterjee, R.; Sinha, D.; Bhattacharya, S.; Biswal, L.; Mondal, B.; Bandyopadhyay, C. An IoT-Based Smart Tracking Application Integrated with Global Positioning System (GPS). In Proceedings of the International Conference on Recent Advances in Artificial Intelligence & Smart Applications, Kolkata, India, 14–15 December 2024; pp. 235–246. [Google Scholar]
- Sonam; Johari, R.; Garg, S.; Bawa, P.; Aggarwal, D. MIAWM:MQTT based IoT Application for Weather Monitoring. J. High Speed Netw. 2024, 30, 333–354. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, D. Enhancing constrained application protocol using message options for internet of things. Clust. Comput. 2022, 26, 1917–1934. [Google Scholar] [CrossRef]
- Tigrine, A.; Houamria, M.; Sahraoui, H.; Dahani, A.; Doumi, N.; Dine, K. A web-based system for real-time ECG monitoring using MySQL database and DigiMesh technology: Design and implementation. Med Biol. Eng. Comput. 2025, 1–25. [Google Scholar] [CrossRef]
- Zhuo, Y.; Han, D.; Xu, Z.; Yu, Y. Improved Mixed Gaussian Model for Background Subtraction Based on Color Channel Fusion. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 7965–7970. [Google Scholar]
- Dai, Y.; Yang, L. Background subtraction for video sequence using deep neural network. Multimedia Tools Appl. 2024, 83, 82281–82302. [Google Scholar] [CrossRef]
- Xie, B. A fast video coding algorithm using data mining for video surveillance. Front. Phys. 2025, 13, 1633909. [Google Scholar] [CrossRef]
- Ruan, W.; Liang, C.; Yu, Y.; Wang, Z.; Liu, W.; Chen, J.; Ma, J. Correlation Discrepancy Insight Network for Video Re-identification. ACM Trans. Multimedia Comput. Commun. Appl. 2020, 16, 1–21. [Google Scholar] [CrossRef]
- Xu, X.; Hao, X.; Liu, Z.; Królczyk, G.; Stanislawski, R.; Gardoni, P.; Li, Z. A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles. Sensors 2022, 22, 3742. [Google Scholar] [CrossRef] [PubMed]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]














| Category | Infrared | Bluetooth | Wifi | ZigBee | GPRS | LoRaWAN |
|---|---|---|---|---|---|---|
| Transmission Range | 5 m | 10 m | 100 m | 300 m | 300 m | 15 km |
| Maximum Power Consumption | 10 mW | 100 mW | 100 mW | 150 mW | 2 w | 50 mW |
| Transmission Rate | 100 kbps | 1–2 Mbps | 300 Mbps | 250 kbps | 20 kbps | 0.3–62.5 kbps |
| Hex-Format Command | Function Code |
|---|---|
| 0x55 0x48 0x00 0x31 0x00 0x02 0x23 | Single-shot Command, Formatted Image Data Response |
| 0x55 0x45 0x00 0x31 0x01 0x00 0x23 | Fetch First-frame Hex Data |
| 0x55 0x45 0x00 0x31 0xn 0x00 0x23 | Fetch n-frame Hex Data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, G.; Tao, W.; Hwang, R.-C.; Xie, C. Wide-Area Visual Monitoring System Based on NB-IoT. Sensors 2025, 25, 6589. https://doi.org/10.3390/s25216589
Qiu G, Tao W, Hwang R-C, Xie C. Wide-Area Visual Monitoring System Based on NB-IoT. Sensors. 2025; 25(21):6589. https://doi.org/10.3390/s25216589
Chicago/Turabian StyleQiu, Guohua, Weiyu Tao, Rey-Chue Hwang, and Chaofan Xie. 2025. "Wide-Area Visual Monitoring System Based on NB-IoT" Sensors 25, no. 21: 6589. https://doi.org/10.3390/s25216589
APA StyleQiu, G., Tao, W., Hwang, R.-C., & Xie, C. (2025). Wide-Area Visual Monitoring System Based on NB-IoT. Sensors, 25(21), 6589. https://doi.org/10.3390/s25216589
