Experimental Study on Instability of Shotcrete Reinforced Slope Based on Embedded Anchor Sensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Introduction to Rock Slope Model
2.2. GFRP and Steel Anchor Sensor Manufacturing Method
2.3. Anchor Sensor Layout
3. Slope Collapse Test
4. Results
4.1. Analysis of Experimental Results
4.2. Discrete Element Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, M.; Champaigne, D.; Coulombe, J.G.; Challagulla, K. Development of two new rockbolts for safe and rapid tunneling in burst-prone ground. Tunn. Undergr. Space Technol. 2019, 91, 103010. [Google Scholar] [CrossRef]
- Shayea, N.A. Displacement of rods during pullout failure of rock anchors: A Case Study. Geotech. Geol. Eng. 2024, 42, 5117–5141. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Teng, J.; Zhang, H.; Chen, X. An Investigation into Bolt Anchoring Performance during Tunnel Construction in Bedded Rock Mass. Appl. Sci. 2020, 10, 2329. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Ghosh, J.K.; Samadhiya, N.K. Review of Geohazard Warning Systems toward Development of a Popular Usage Geohazard Warning Communication System. Nat. Hazards Rev. 2012, 13, 260–271. [Google Scholar] [CrossRef]
- Zhu, W.; Jing, H.; Yang, L.; Pan, B.; Su, H. Strength and deformation behaviors of bedded rock mass under bolt reinforcement. Int. J. Min. Sci. Technol. 2018, 28, 593–599. [Google Scholar] [CrossRef]
- Li, N.; Du, Z.; Gao, F.; Qi, F.; Gao, H.; Li, M.; Wang, X. Simulation Study on Mechanical Characteristics of Rock Bolt in Rock Mass with Bedding Separation Based on the Nonlinear Bond Slip Relationship. Geofluids 2022, 2022, 5279884. [Google Scholar] [CrossRef]
- Yu, F.; Sun, B.; Wang, Q.; Fang, P.; Zhang, T.; Chen, J.; Zhao, X.; Zhu, D. Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway. Shock. Vib. 2024, 2024, 3834064. [Google Scholar] [CrossRef]
- Mesutoglu, M.; Ozkan, I. Evaluation and Comparison of Rock Bolting Versus Steel Arch Support Systems in Thick Coal Seam Underground Galleries: A Case Study. Min. Metall. Explor. 2024, 41, 1719–1737. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Zhao, J.; Bai, J. Numerical study on the reinforcement mechanism of prestressed bolts based on the reconstruction of coal fracture structures. Simul. Model. Pract. Theory 2025, 139, 103046. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, X.; Zhao, W.; Sun, X.; Li, F.; Du, Y.; Liu, B.; Gao, Y. High Precision, Small Size and Flexible FBG Strain Sensor for Slope Model Monitoring. Sensors 2019, 19, 2716. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Cai, W.; Li, S.; Zhang, Q. Stability monitoring of surrounding rock mass on a forked tunnel using both strain gauges and FBG sensors. Measurement 2020, 153, 107449. [Google Scholar] [CrossRef]
- Zhu, D.; Lai, Z.; Wang, Z. Freeze–thaw process of soil between two piles as monitored by piezoelectric ceramic sensor. Sci. Rep. 2023, 13, 5706. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.F.; Abbas, M.S.; Wang, H.; Qamhia, I.I.A.; Tutumluer, E.; Wallace, J.; Hammond, M. A Laboratory-Scale Evaluation of Smart Pebble Sensors Embedded in Geomaterials. Sensors 2024, 24, 2733. [Google Scholar] [CrossRef]
- Souza, B.; Benoit, J. Rockfall motion using a Smart Rock sensor. Can. Geotech. J. 2024, 61, 802–819. [Google Scholar] [CrossRef]
- Li, Y.; Su, G.; Liu, X.; Wang, L.; Cao, G.; Pang, J. Laboratory study of the effects of grouted rebar bolts on shear failure of structural planes in deep hard rocks. Int. J. Rock Mech. Min. Sci. 2023, 162, 105308. [Google Scholar] [CrossRef]
- Ruggeri, P.; Fruzzetti, V.M.E.; Scarpelli, G. The Behavior of a Thread-Bar Grouted Anchor in Soils from Local Strain Monitoring. Appl. Sci. 2020, 10, 7194. [Google Scholar] [CrossRef]
- Xue, B.; Gong, J. Study on steel reinforced concrete-filled GFRP tubular column under compression. Thin-Walled Struct. 2016, 106, 1–8. [Google Scholar] [CrossRef]
- Yu, J.; Lee, J.; Bibek, T.; Park, S.; Chang, S.; Kim, J.; Kim, Y. Performance Evaluation of GFRP Rock Bolt Sensor for Rock Slope Monitoring by Double Shear Test. Adv. Civil Eng. 2020, 2020, 8870698. [Google Scholar] [CrossRef]
- Li, H.; Fu, J.; Chen, B.; Zhang, X.; Zhang, Z.; Lang, L. Mechanical Properties of GFRP Bolts and Its Application in Tunnel Face Reinforcement. Materials 2023, 16, 2193. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M.; Sennah, K.; Azimi, H.; Afefy, H.M. Behavior and design of GFRP bar adhesive anchors under direct tension for deteriorated concrete bridge barrier replacement. Adv. Struct. Eng. 2025, 28, 2408–2425. [Google Scholar] [CrossRef]
- Guadagnuolo, M.; Faella, G.; Frunzio, G.; Massaro, L.; Brigante, D. The capacity of GFRP anchors in concrete and masonry structures. Procedia Struct. Integr. 2023, 44, 942–949. [Google Scholar] [CrossRef]
- Wang, J.; Xia, H.; Cai, H. Study on the influence of anchor plate parameters on the bearing characteristics of the new large-diameter multi-plate soil anchor and creep property of anchor. Sci. Rep. 2024, 14, 28158. [Google Scholar] [CrossRef]
- He, X.; Li, G.; Bakarr, K.S.; Wu, J.; Yu, W. Comparative Test on the Bond Damage of Steel and GFRP Bars Reinforcing Soft Rock Slopes. Appl. Sci. 2021, 11, 11161. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, X.; Yan, N.; Sun, G.; Hou, D.; Liu, J. Field test of GFRP bar anti-floating anchor slurry-rock interface bonding performance. Compos. Struct. 2024, 331, 117893. [Google Scholar] [CrossRef]
- Ma, H.; Bai, X.; Han, J.; Hao, Z.; Yan, N.; Dong, X. Experimental study on the mechanical properties of GFRP bolts: Insights from failure modes and adhesion strength of the rod-grout interface. Case Stud. Constr. Mater. 2025, 23, e05103. [Google Scholar] [CrossRef]
- Sun, G.; Bai, X.; Sang, S.; Zeng, L.; Yin, J.; Jing, D.; Zhang, M.; Yan, N. Numerical Simulation of Anchorage Performance of GFRP Bolt and Concrete. Buildings 2023, 13, 493. [Google Scholar] [CrossRef]
- Rahayu, W.; Ramadhan, R.I.; Adinegara, A.W.; Adiguna, G.A.; Hamdany, A.H.; Wijaya, M.; Prakoso, W.A.; Sagitaningrum, F.H.; Satyanaga, A. Effect of slope protection using concrete waste on slope stability during rainfall. Results Eng. 2024, 24, 103244. [Google Scholar] [CrossRef]
- Bian, S.; Chen, G.; Meng, X.; Yang, Y.; Wu, J.; Huang, F.; Wu, B.; Jin, J.; Qiao, F.; Chong, Y.; et al. Physical model experiment of rainfall-induced instability of a two-layer slope: Implications for early warning. Landslides 2024, 21, 3149–3167. [Google Scholar] [CrossRef]
- Wang, D.; Wang, B.; Jiang, Q.; Guo, N.; Zhang, W.; He, K. Large deformation slope failure—A perspective from multiscale modelling. Comput. Geotech. 2022, 150, 104886. [Google Scholar] [CrossRef]
- Xue, L.; Li, L.; Xu, C.; Cui, Y.; Ding, H.; Huang, K.; Li, Z. A multi-objective optimization evaluation model for seismic performance of slopes reinforced by pile-anchor system. Sci. Rep. 2024, 14, 5044. [Google Scholar] [CrossRef]
- Kong, K.; Deng, Z.; Chen, F.; Wang, Z.; Chen, Y. Numerical analysis of the effect of vegetation root reinforcement on the rainfall-induced instability of loess slopes. Sci. Rep. 2025, 15, 23233. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Chen, C.S.; Wang, T.T. Sediment Sluice Tunnel of Zengwen Reservoir and construction of section with huge underground excavation adjacent to neighboring slope. Eng. Geol. 2019, 260, 105227. [Google Scholar] [CrossRef]
- Xu, Z.; Song, S.; Wu, F.; Cao, C.; Ma, M.; Wang, S. Research on the spatiotemporal evolution of deformation and seismic dynamic response characteristics of high-steep loess slope on the northeast edge of the Qinghai-Tibet Plateau. Bull. Eng. Geol. Environ. 2025, 84, 21. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Conte, E. Analysis of an excavation-induced landslide in stiff clay using the material point method. Eng. Geol. 2022, 296, 106479. [Google Scholar] [CrossRef]




















| Material Parameters | Experimental Test Value |
|---|---|
| Internal friction angle (°) | 36 |
| Cohesion (kPa) | 18 |
| Poisson’s ratio (μ) | 0.26 |
| Water content (%) | 7 |
| Dry density (g/cm3) | 2.25 |
| Material Parameters | Values |
|---|---|
| Breaking load (kN) | 25 |
| Tensile strength (MPa) | 850 |
| Shear strength (MPa) | 150 |
| Elastic modulus (GPa) | 60 |
| Glass content (%) | 75 |
| Quantitative Indicators | GFRP Anchor | Steel Anchor |
|---|---|---|
| Ultimate strain | 1.42% (14,200 με) | 0.15% (1500 με) |
| Warning threshold (με) | 4260 | 450 |
| Strain sensitivity (με/mm) | 28.5 | 23.9 |
| Excavation Stage | Anchor Type | Time to First Warning Threshold (s) | Time to Instability (s) | Warning Time (s) | Corresponding Displacement (mm) | Strain Sensitivity (με/mm) |
|---|---|---|---|---|---|---|
| 3 m | GFRP anchor | 391 | 505 | 114 | 90 | 28.4 |
| 3 m | Steel anchor | 404 | 493 | 89 | 13 | 24.0 |
| 4 m | GFRP anchor | 4011 | 4059 | 48 | 397 | 28.5 |
| 4 m | Steel anchor | 4016 | 4059 | 43 | 143 | 23.9 |
| Excavation Condition | Maximum Displacement (mm) | Maximum Axial Force (kN) | ||
|---|---|---|---|---|
| 3DEC | Field Test | 3DEC | ||
| GFRP anchor | 3 m | 156.8 | 185 | 73.4 |
| Steel anchor | 3 m | 59.8 | 31 | 23.4 |
| GFRP anchor | 4 m | 394.2 | 308 | 98.7 |
| Steel anchor | 4 m | 81.6 | 54 | 58.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, H.; Ou, J.; Jin, J. Experimental Study on Instability of Shotcrete Reinforced Slope Based on Embedded Anchor Sensor. Sensors 2025, 25, 6493. https://doi.org/10.3390/s25206493
Ning H, Ou J, Jin J. Experimental Study on Instability of Shotcrete Reinforced Slope Based on Embedded Anchor Sensor. Sensors. 2025; 25(20):6493. https://doi.org/10.3390/s25206493
Chicago/Turabian StyleNing, Hai, Junkai Ou, and Jihuan Jin. 2025. "Experimental Study on Instability of Shotcrete Reinforced Slope Based on Embedded Anchor Sensor" Sensors 25, no. 20: 6493. https://doi.org/10.3390/s25206493
APA StyleNing, H., Ou, J., & Jin, J. (2025). Experimental Study on Instability of Shotcrete Reinforced Slope Based on Embedded Anchor Sensor. Sensors, 25(20), 6493. https://doi.org/10.3390/s25206493

