Particle Image Velocimetry Algorithm Based on Spike Camera Adaptive Integration
Abstract
1. Introduction
1.1. Frame-Based High-Speed Cameras
1.2. Neuromorphic Vision Sensor
1.2.1. Event Camera
1.2.2. Spike Camera
1.3. The Current Unresolved Difficulties in Overexposed Scenes
- Frame-based high-speed cameras have insufficient dynamic range due to all pixels having the same integration time (high-speed cameras typically <60 dB, 1000:1), making it difficult to simultaneously capture high brightness and low brightness scenarios, as well as overexposed and non-overexposed regions;
1.4. The Algorithm Proposed in This Study
2. Materials and Methods
2.1. Signal Acquisition Based on Spike Camera
- Each pixel independently receives photoelectrons and accumulates charges through integration;
- Charge accumulation causes the voltage to exceed the threshold, then emit a “1” spike and immediately reset, clearing the charge to zero;
- If the threshold is not reached within the output cycle, the emission will not be triggered and will remain at “0”;
- The continuous output of spike time series reflects the changes in intensity of light.
2.2. Spike Array Signal Preprocessing
2.3. Adaptive Integral Spike Image Reconstruction Algorithm
3. Results
3.1. Validation with Synthetic Data
3.1.1. Generation of Synthetic Images
3.1.2. Quantitative Analysis of Velocity Fields
3.2. Experiment
3.2.1. Experimental Setup
3.2.2. Accuracy Assessment of the Spike-Based PIV
3.2.3. Comparison of Frame-Based PIV and Spike-Based PIV
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jambunathan, K.; Ju, X.; Dobbins, B.; Ashforth-Frost, S. An improved cross correlation technique for particle image velocimetry. Meas. Sci. Technol. 1995, 6, 507. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide, 3rd ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Nobach, H.; Bodenschatz, E. Limitations of accuracy in PIV due to individual variations of particle image intensities. Exp. Fluids 2009, 47, 27–38. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.; Peng, D.; Lv, P.; Li, H. Precise PIV Measurement in Low SNR Environments Using a Multi-Task Convolutional Neural Network. J. Mar. Sci. Eng. 2025, 13, 612. [Google Scholar] [CrossRef]
- Hain, R.; Kähler, C.J.; Tropea, C. Comparison of CCD, CMOS and intensified cameras. Exp. Fluids 2007, 42, 403–411. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Wilson, M.A.; Etienne-Cummings, R. Pix2HDR-A pixel-wise acquisition and deep learning-based synthesis approach for high-speed HDR videos. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 8771–8787. [Google Scholar] [CrossRef] [PubMed]
- Tropea, C.; Yarin, A.L.; Foss, J.F. Springer Handbook of Experimental Fluid Mechanics; Springer: Berlin, Germany, 2007; pp. 421–441. [Google Scholar]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [Google Scholar] [CrossRef]
- Chakravarthi, B.; Verma, A.A.; Daniilidis, K.; Fermuller, C.; Yang, Y. Recent event camera innovations: A survey. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; pp. 342–376. [Google Scholar]
- Wang, Y.; Idoughi, R.; Heidrich, W. Stereo event-based particle tracking velocimetry for 3d fluid flow reconstruction. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 36–53. [Google Scholar]
- Willert, C. Event-based particle image velocimetry for high-speed flows. Meas. Sci. Technol. 2025, 36, 075302. [Google Scholar] [CrossRef]
- Willert, C.E.; Klinner, J. Dynamic wall shear stress measurement using event-based 3d particle tracking. Exp. Fluids 2025, 66, 32. [Google Scholar] [CrossRef]
- Franceschelli, L.; Willert, C.E.; Raiola, M.; Discetti, S. An assessment of event-based imaging velocimetry for efficient estimation of low-dimensional coordinates in turbulent flows. Exp. Therm. Fluid Sci. 2025, 164, 111425. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, X.; Li, S.; He, C.; Wen, X.; Liu, Y. A novel event-based ensemble particle tracking velocimetry for single-pixel turbulence statistics. Exp. Therm. Fluid Sci. 2025, 169, 111554. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, X.; Lyu, Z.; Cai, W.; Liu, H.; Liu, Y. Benchmark evaluation of event-based imaging velocimetry using digital micro-mirror device. Exp. Fluids 2025, 66, 1–17. [Google Scholar] [CrossRef]
- Zeng, X.; Lyu, Z.; Cao, J.; He, C.; Liu, Y. Super-time-resolution particle tracking velocimetry via the fusion of event-and frame-based cameras. Meas. Sci. Technol. 2025, 36, 065302. [Google Scholar] [CrossRef]
- Zeng, X.; Cao, J.; Lyu, Z.; He, C.; Cai, W.; Liu, Y. A temporally adaptive particle tracking velocimetry using continuous-wave illumination for fused event-and frame-based cameras. J. Vis. 2025, 28, 463–486. [Google Scholar] [CrossRef]
- Lyu, Z.; Cai, W.; Wang, B.; Liu, Y. A temporally adaptive schlieren approach by fusing frame-and event-based cameras. Opt. Lett. 2025, 50, 289–292. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Hardalupas, Y. Evaluation of an event-based camera for time-resolved imaging of primary atomization in an air-assist atomizer. Exp. Fluids 2025, 66, 1–15. [Google Scholar] [CrossRef]
- Balaji, M.M.; Ahsanullah, D.; Rangarajan, P. Probing diffusive media through speckle differencing. Biomed. Opt. Express 2024, 15, 5442–5460. [Google Scholar] [CrossRef]
- Huang, T.; Zheng, Y.; Yu, Z.; Chen, R.; Li, Y.; Xiong, R.; Ma, L.; Zhao, J.; Dong, S.; Zhu, L.; et al. 1000× faster camera and machine vision with ordinary devices. Engineering 2023, 25, 110–119. [Google Scholar] [CrossRef]
- Zhao, R.; Xiong, R.; Zhao, J.; Yu, Z.; Fan, X.; Huang, T. Learning optical flow from continuous spike streams. In Proceedings of the 36th International Conference on Neural Information Processing Systems (NIPS ’22), Red Hook, NY, USA, 28 November 2022–9 December 2022; pp. 7905–7920. [Google Scholar]
- Zhang, Y.; Xiong, B.; Zhou, Y.; Su, C.; Cheng, Z.; Yu, Z.; Cao, X.; Huang, T. Spike Imaging Velocimetry: Dense Motion Estimation of Fluids Using Spike Cameras. arXiv 2025, arXiv:2504.18864. [Google Scholar] [CrossRef]
- Sun, L.; Bao, Y.; Zhai, J.; Liang, J.; Zhang, Y.; Wang, K.; Paudel, D.; Van Gool, L. Low-Light Image Enhancement using Event-Based Illumination Estimation. arXiv 2025, arXiv:2504.09379. [Google Scholar]
- Gehrig, D.; Scaramuzza, D. Event Cameras Meet SPADs for High-Speed, Low-Bandwidth Imaging. arXiv 2024, arXiv:2404.00834. [Google Scholar]
- McReynolds, B.; Graca, R.; Oliver, R.; Nishiguchi, M.; Delbruck, T. Demystifying Event-based Sensor Biasing to Optimize Signal to Noise for Space Domain Awareness. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 15–21 September 2023; p. 142. [Google Scholar]
- Astarita, T. Analysis of interpolation schemes for image deformation methods in PIV. Exp. Fluids 2005, 40, 233–243. [Google Scholar] [CrossRef]
- Rajendran, L.K.; Bane, S.P.M.; Vlachos, P.P. PIV/BOS Synthetic Image Generation in Variable Density Environments for Error Analysis and Experiment Design. Meas. Sci. Technol. 2019, 31, 017003. [Google Scholar] [CrossRef]
Gradient of Speed Variation 1 | Frame-Based Camera RMAE | Frame-Based Camera RMSE | Spike-Based Camera RMAE | Spike-Based Camera RMSE | RMAE Ratio 2 | RMSE Ratio 3 |
---|---|---|---|---|---|---|
Linear (CI HW) | 0.723030 ± 0.112288 | 0.635536 ± 0.077221 | 0.084129 ± 0.002994 | 0.050836 ± 0.001823 | 8.594 | 12.502 |
Quadratic (CI HW) | 0.404530 ± 0.075276 | 0.437883 ± 0.053206 | 0.027903 ± 0.001039 | 0.014044± 0.000363 | 14.498 | 31.179 |
Logarithm (CI HW) | 0.205173 ± 0.029401 | 0.349597 ± 0.042329 | 0.113395 ± 0.003042 | 0.096370 ± 0.002478 | 1.809 | 3.628 |
Gradient of Speed Variation 1 | Frame-Based Camera RMAE | Frame-Based Camera RMSE | Spike-Based Camera RMAE | Spike-Based Camera RMSE | RMAE Ratio 2 | RMSE Ratio 3 |
---|---|---|---|---|---|---|
Linear (CI HW) | 0.038020 ± 0.000310 | 0.053413 ± 0.000448 | 0.037676 ± 0.000265 | 0.052953 ± 0.000370 | 1.009 | 1.009 |
Quadratic (CI HW) | 0.058076 ± 0.000117 | 0.069745 ± 0.000123 | 0.057459 ±0.000243 | 0.069055 ± 0.000149 | 1.011 | 1.010 |
Logarithm (CI HW) | 0.024865 ± 0.000365 | 0.042341 ± 0.000602 | 0.024367 ± 0.000299 | 0.041726 ± 0.000433 | 1.020 | 1.015 |
Parameter | Value |
---|---|
Overall Dimensions | Length 4.68 m × Width 1.1 m × Height 2.4 m |
Flow Uniformity | 0.5% |
Velocity Range | 0.1–1.9 m/s |
Driving Method | Gravity-driven overflow type |
Camera type | Framerate | Resolution | Dynamic Range |
---|---|---|---|
VidarPro M1K20 1 | 40,000 Hz | 1000 × 1000 | 100 dB (100,000:1) |
Phantom T2410 2 | 10,000 Hz | 1280 × 800 | 52 dB (400:1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, C.; Wang, Y.; Li, H.; Li, Y.; Huang, T.; Huang, Y.; Lv, P. Particle Image Velocimetry Algorithm Based on Spike Camera Adaptive Integration. Sensors 2025, 25, 6468. https://doi.org/10.3390/s25206468
Li X, Wu C, Wang Y, Li H, Li Y, Huang T, Huang Y, Lv P. Particle Image Velocimetry Algorithm Based on Spike Camera Adaptive Integration. Sensors. 2025; 25(20):6468. https://doi.org/10.3390/s25206468
Chicago/Turabian StyleLi, Xiaoqiang, Changxu Wu, Yichao Wang, Hongyuan Li, Yuan Li, Tiejun Huang, Yuhao Huang, and Pengyu Lv. 2025. "Particle Image Velocimetry Algorithm Based on Spike Camera Adaptive Integration" Sensors 25, no. 20: 6468. https://doi.org/10.3390/s25206468
APA StyleLi, X., Wu, C., Wang, Y., Li, H., Li, Y., Huang, T., Huang, Y., & Lv, P. (2025). Particle Image Velocimetry Algorithm Based on Spike Camera Adaptive Integration. Sensors, 25(20), 6468. https://doi.org/10.3390/s25206468