A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing
Abstract
Highlights
- Suitable modifications to the Randles circuit for modern-day electrodes;
- Impact of coatings of non-biological and/or biological materials on the measured im-pedance.
Abstract
1. Introduction
2. Methodology and Key Terminology
2.1. Apparatus
2.2. Terminology
- Nyquist plot:
- Ohmic or uncompensated resistance:
- Electrochemical double-layer capacitance:
- Constant phase element:
- Charge transfer resistance:
- Randles equivalent circuit:
3. Results
3.1. Semi-Infinite Mass Transfer
3.1.1. Influence of Mass Transfer Time Constant
3.1.2. Semi-Infinite (Hemi)spherical Diffusion
3.2. Capacitance
3.2.1. Dielectric Capacitance ()
3.2.2. Geometric Capacitance ()
3.2.3. Pseudocapacitance ()
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef]
- Prodromidis, M.I. Impedimetric Immunosensors—A Review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; p. 1044. ISBN 978-1-119-33405-7. [Google Scholar]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Sluyters-Rehbach, M. Impedances of Electrochemical Systems: Terminology, Nomenclature and Representation—Part I: Cells with Metal Electrodes and Liquid Solutions (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 1831–1891. [Google Scholar] [CrossRef]
- Lvovich, V.F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley-VCH: Hoboken, NJ, USA, 2015; p. 353. ISBN 978-1-118-16409-9. [Google Scholar]
- Lasia, A. The Origin of the Constant Phase Element. J. Phys. Chem. Lett. 2022, 13, 580–589. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Lazanas, A.C.; Prodromidis, M.I. Shedding Light on the Calculation of Electrode Electroactive Area and Heterogeneous Electron Transfer Rate Constants at Graphite Screen-Printed Electrodes. Microchim. Acta 2023, 190, 251. [Google Scholar] [CrossRef]
- Sluyters, J.H. On the Impedance of Galvanic Cells: I. Theory. Recl. Des Trav. Chim. Des Pays-Bas 1960, 79, 1092–1100. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef]
- Randviir, E.P.; Banks, C.E. Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
- Lasia, A. Impedance of the Faradaic Reactions in the Presence of Mass Transfer. In Electrochemical Impedance Spectroscopy and Its Applications; Lasia, A., Ed.; Springer: New York, NY, USA, 2014; pp. 85–125. ISBN 978-1-4614-8933-7. [Google Scholar]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- VanderNoot, T.J. Limitations in the Analysis of Ac Impedance Data with Poorly Separated Faradaic and Diffusional Processes. J. Electroanal. Chem. Interfacial Electrochem. 1991, 300, 199–210. [Google Scholar] [CrossRef]
- Karimi Shervedani, R.; Samiei Foroushani, M. Comparative Electrochemical Behavior of Proteins; Cytochrome c, Agaricus Bisporus Laccase, and Glucose Oxidase, Immobilized onto Gold-Thiol Self-Assembled Monolayer via Electrostatic, Covalent, and Covalent Coordinate Bond Methods. Electrochim. Acta 2016, 187, 646–654. [Google Scholar] [CrossRef]
- Karimi Shervedani, R.; Akrami, Z.; Sabzyan, H. Nanostructure Molecular Assemblies Constructed Based on Ex-Situ and In-Situ Layer-by-Layer Ferrioxamation Characterized by Electrochemical and Scanning Tunneling Microscopy Methods. J. Phys. Chem. C 2011, 115, 8042–8055. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Foroushani, M.S. Direct Electrochemistry of Cytochrome c Immobilized on Gold Electrode Surface via Zr(IV) Ion Glue and Its Activity for Ascorbic Acid. Bioelectrochemistry 2014, 98, 53–63. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry Principles, Methods and Applications; Oxford University Press: Oxford, UK, 1994; p. 444. [Google Scholar]
- Orazem, M.E.; Tribollet, B. Diffusion Impedance. In Electrochemical Impedance Spectroscopy; Wiley-VCH: Hoboken, NJ, USA, 2017; pp. 243–301. ISBN 978-1-119-36368-2. [Google Scholar]
- Yeager, E.; Bockris, J.M.; Conway, B.E.; Saranapani, S. Comprehensive Treatise of Electrochemistry: Vol. 9, Electrodiscs: Experimental Techniques; Plenum Press: New York, NY, USA, 1984. [Google Scholar]
- Vetter, K.J. Gleich-Und Wechselstromwiderstand Der Diffusionspolarisation Bei Örtlich Variabler Austauschstromdichte an Der Elektrode. Z. Für Phys. Chem. 1952, 199, 300–313. [Google Scholar] [CrossRef]
- Retter, U.; Lohse, H. Electrochemical Impedance Spectroscopy. In Electroanalytical Methods: Guide to Experiments and Applications; Scholz, F., Bond, A.M., Compton, R.G., Fiedler, D.A., Inzelt, G., Kahlert, H., Komorsky-Lovrić, Š., Lohse, H., Lovrić, M., Marken, F., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 159–177. ISBN 978-3-642-02915-8. [Google Scholar]
- O’Connor, F.; Lazanas, A.; Prieto-Simon, B. Carbonised Porous Silicon as Scaffold and Sensor for the Electrochemical Detection and Characterisation of Bacterial Biofilm Growth. J. Mater. Chem. B 2025, 13, 11284–11297. [Google Scholar] [CrossRef]
- Landon-Lane, L.; Marshall, A.T.; Harrington, D.A. EIS at Carbon Fiber Cylindrical Microelectrodes. Electrochem. Commun. 2019, 109, 106566. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Lin, Q. Amperometric Nonenzymatic Determination of Glucose Free of Interference Based on Poly (Sulfosalicylic Acid) Modified Nickel Microelectrode. Anal. Lett. 2010, 43, 631–643. [Google Scholar] [CrossRef]
- Russell, C.; Ward, A.C.; Vezza, V.; Hoskisson, P.; Alcorn, D.; Steenson, D.P.; Corrigan, D.K. Development of a Needle Shaped Microelectrode for Electrochemical Detection of the Sepsis Biomarker Interleukin-6 (IL-6) in Real Time. Biosens. Bioelectron. 2019, 126, 806–814. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Johnson, W.B. Fundamentals of Impedance Spectroscopy. In Impedance Spectroscopy; Wiley-VCH: Hoboken, NJ, USA, 2018; pp. 1–20. ISBN 978-1-119-38186-0. [Google Scholar]
- Lasia, A. Coatings and Paints. In Electrochemical Impedance Spectroscopy and Its Applications; Lasia, A., Ed.; Springer: New York, NY, USA, 2014; pp. 257–261. ISBN 978-1-4614-8933-7. [Google Scholar]
- Orazem, M.E.; Tribollet, B. Impedance of Materials. In Electrochemical Impedance Spectroscopy; Wiley-VCH: Hoboken, NJ, USA, 2017; pp. 303–318. ISBN 978-1-119-36368-2. [Google Scholar]
- Armstrong, R.D.; Race, W.P. Double Layer Capacitance Dispersion at the Metal-Electrolyte Interphase in the Case of a Dilute Electrolyte. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 285–290. [Google Scholar] [CrossRef]
- Singh, N.; Nayak, J.; Patel, K.; Sahoo, S.K.; Kumar, R. Electrochemical Impedance Spectroscopy Reveals a New Mechanism Based on Competitive Binding between Tris and Protein on a Conductive Biomimetic Polydopamine Surface. Phys. Chem. Chem. Phys. 2018, 20, 25812–25821. [Google Scholar] [CrossRef]
- Golshaei, R.; Guler, Z.; Sarac, S.A. (Au/PANA/PVAc) Nanofibers as a Novel Composite Matrix for Albumin and Streptavidin Immobilization. Mater. Sci. Eng. C 2016, 60, 260–275. [Google Scholar] [CrossRef]
- Kaushik, A.; Yndart, A.; Kumar, S.; Jayant, R.D.; Vashist, A.; Brown, A.N.; Li, C.-Z.; Nair, M. A Sensitive Electrochemical Immunosensor for Label-Free Detection of Zika-Virus Protein. Sci. Rep. 2018, 8, 9700. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Prodromidis, M.I. Humidity Impedimetric Sensor Based on Vanadium Pentoxide Xerogel Modified Screen−printed Graphite Electrochemical Cell. Talanta 2020, 216, 121003. [Google Scholar] [CrossRef]
- Frackowiak, E.; Béguin, F. (Eds.) Supercapacitors: Materials, Systems, and Applications; Wiley-VCH: Hoboken, NJ, USA, 2013; ISBN 978-3-527-32883-3. [Google Scholar]
- Conway, B.E. Electrochemical Capacitors Based on Pseudocapacitance. In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Conway, B.E., Ed.; Springer: Boston, MA, USA, 1999; pp. 221–257. ISBN 978-1-4757-3058-6. [Google Scholar]
- Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207–282. [Google Scholar] [CrossRef]
- Huang, W.-D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.C. A Flexible pH Sensor Based on the Iridium Oxide Sensing Film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Jović, M.; Hidalgo-Acosta, J.C.; Lesch, A.; Costa Bassetto, V.; Smirnov, E.; Cortés-Salazar, F.; Girault, H.H. Large-Scale Layer-by-Layer Inkjet Printing of Flexible Iridium-Oxide Based pH Sensors. J. Electroanal. Chem. 2018, 819, 384–390. [Google Scholar] [CrossRef]
- Medhi, A.; Baruah, S.; Singh, J.; Betty, C.A.; Mohanta, D. Au Nanoparticle Modified GO/PEDOT-PSS Based Immunosensor Probes for Sensitive and Selective Detection of Serum Immunoglobulin g (IgG). Appl. Surf. Sci. 2022, 575, 151775. [Google Scholar] [CrossRef]
- Feng, X.; Cheng, H.; Pan, Y.; Zheng, H. Development of Glucose Biosensors Based on Nanostructured Graphene-Conducting Polyaniline Composite. Biosens. Bioelectron. 2015, 70, 411–417. [Google Scholar] [CrossRef]
- Voitechovič, E.; Bratov, A.; Abramova, N.; Razumienė, J.; Kirsanov, D.; Legin, A.; Lakshmi, D.; Piletsky, S.; Whitcombe, M.; Ivanova-Mitseva, P.K. Development of Label-Free Impedimetric Platform Based on New Conductive Polyaniline Polymer and Three-Dimensional Interdigitated Electrode Array for Biosensor Applications. Electrochim. Acta 2015, 173, 59–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazanas, A.; Prieto Simón, B. A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing. Sensors 2025, 25, 6260. https://doi.org/10.3390/s25196260
Lazanas A, Prieto Simón B. A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing. Sensors. 2025; 25(19):6260. https://doi.org/10.3390/s25196260
Chicago/Turabian StyleLazanas, Alexandros, and Beatriz Prieto Simón. 2025. "A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing" Sensors 25, no. 19: 6260. https://doi.org/10.3390/s25196260
APA StyleLazanas, A., & Prieto Simón, B. (2025). A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing. Sensors, 25(19), 6260. https://doi.org/10.3390/s25196260