Reconfigurable Multi-Channel Gas-Sensor Array for Complex Gas Mixture Identification and Fish Freshness Classification
Abstract
1. Introduction
2. Design of the Gas Sensor Array System
3. Experimental
3.1. Materials
3.2. Methods
3.2.1. Gas Sensor Array and Its Properties
3.2.2. Gas Sensing Measurement
3.2.3. TVB-N Measurement
4. Results and Discussion
4.1. Principal Component Analysis (PCA)
4.2. Comparison of Accuracy Under Different Classification Methods
4.3. Optimization of the Gas-Sensor Array System
4.4. Practicality and Cost Trade-Offs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VOCs | Volatile Organic Compounds |
TVB-N | Total Volatile Basic Nitrogen |
PCA | Principal Component Analysis |
CNN | Convolutional Neural Network |
RF | Random Forest |
PSO-SVM | Support Vector Machine optimized by Particle Swarm Optimization |
References
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A-Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Sutka, A.; Gross, K.A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B-Chem. 2016, 222, 95–105. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B-Adv. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Chai, H.; Zheng, Z.; Liu, K.; Xu, J.; Wu, K.; Luo, Y.; Liao, H.; Debliquy, M.; Zhang, C. Stability of Metal Oxide Semiconductor Gas Sensors: A Review. IEEE Sens. J. 2022, 22, 5470–5481. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption. Sensors 2014, 14, 6844–6853. [Google Scholar] [CrossRef]
- Jakubik, W.P. Surface acoustic wave-based gas sensors. Thin Solid Film. 2011, 520, 986–993. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. 2017, 60, 132–176. [Google Scholar] [CrossRef]
- Vlk, M.; Datta, A.; Alberti, S.; Yallew, H.D.; Mittal, V.; Murugan, G.S.; Jagerska, J. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light-Sci. Appl. 2021, 10, 26. [Google Scholar] [CrossRef]
- Silambarasan, P.; Moon, I.S. Real-time monitoring of chlorobenzene gas using an electrochemical gas sensor during mediated electrochemical degradation at room temperature. J. Electroanal. Chem. 2021, 894, 115372. [Google Scholar] [CrossRef]
- Williams, D.E. Electrochemical sensors for environmental gas analysis. Curr. Opin. Electrochem. 2020, 22, 145–153. [Google Scholar] [CrossRef]
- Rath, R.J.J.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv. Eng. Mater. 2023, 25, 2200830. [Google Scholar] [CrossRef]
- Mei, H.; Peng, J.; Wang, T.; Zhou, T.; Zhao, H.; Zhang, T.; Yang, Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. Nano-Micro Lett. 2024, 16, 269. [Google Scholar] [CrossRef]
- Han, J.; Li, H.; Cheng, J.; Ma, X.; Fu, Y. Advances in metal oxide semiconductor gas sensor arrays based on machine learning algorithms. J. Mater. Chem. C 2025, 13, 4285–4303. [Google Scholar] [CrossRef]
- Li, P.; Ren, Z.; Shao, K.; Tan, H.; Niu, Z.J.S. Research on distinguishing fish meal quality using different characteristic parameters based on electronic nose technology. Sensors 2019, 19, 2146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Jiang, F.; Lai, R.J.S. Design of Electronic Nose Based on MOS Gas Sensors and Its Application in Juice Identification. Sensors 2025, 25, 1205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tang, N.; Zhou, C.; Han, Z.; Qu, H.; Duan, X. A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 2018, 10, 20578–20586. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. Acs Appl. Mater. Interfaces 2020, 12, 17725–17736. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Lee, J.E.; Lim, C.K.; Song, H.; Choi, S.-Y.; Lee, D.-S. A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. Micro Nano Syst. Lett. 2021, 9, 10. [Google Scholar] [CrossRef]
- Tiggemann, L.; Ballen, S.C.; Bocalon, C.M.; Graboski, A.M.; Manzoli, A.; Steffens, J.; Valduga, E.; Steffens, C. Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innov. Food Sci. Emerg. Technol. 2017, 43, 112–116. [Google Scholar] [CrossRef]
- Johnston, I.A.; Alderson, R.; Sandham, C.; Dingwall, A.; Mitchell, D.; Selkirk, C.; Nickell, D.; Baker, R.; Robertson, B.; Whyte, D.; et al. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (Salmo salar L.). Aquaculture 2000, 189, 335–349. [Google Scholar] [CrossRef]
- Caballero, M.J.; Betancor, M.; Escrig, J.C.; Montero, D.; de los Monteros, A.E.; Castro, P.; Gines, R.; Izquierdo, M. Post mortem changes produced in the muscle of sea bream (Sparus aurata) during ice storage. Aquaculture 2009, 291, 210–216. [Google Scholar] [CrossRef]
- Leon, K.; Mery, D.; Pedreschi, F.; Leon, J. Color measurement in L*a*b* units from RGB digital images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Castro, P.; Padrón, J.C.P.; Cansino, M.J.C.; Velázquez, E.S.; De Larriva, R.M. Total volatile base nitrogen and its use to assess freshness in European sea bass stored in ice. Food Control 2006, 17, 245–248. [Google Scholar] [CrossRef]
- Guizani, N.; Al-Busaidy, M.A.; Al-Belushi, I.M.; Mothershaw, A.; Rahman, M.S. The effect of storage temperature on histamine production and the freshness of yellowfin tuna (Thunnus albacares). Food Res. Int. 2005, 38, 215–222. [Google Scholar] [CrossRef]
- Rahman, A.; Kondo, N.; Ogawa, Y.; Suzuki, T.; Kanamori, K. Determination of K value for fish flesh with ultraviolet-visible spectroscopy and interval partial least squares (iPLS) regression method. Biosyst. Eng. 2016, 141, 12–18. [Google Scholar] [CrossRef]
- Allcock, R.J.N.; Jennison, A.V.; Warrilow, D. Towards a Universal Molecular Microbiological Test. J. Clin. Microbiol. 2017, 55, 3175–3182. [Google Scholar] [CrossRef]
- Wu, K.; Debliquy, M.; Zhang, C. Metal-oxide-semiconductor resistive gas sensors for fish freshness detection. Compr. Rev. Food Sci. Food Saf. 2023, 22, 913–945. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.W.; Li, S.R.; Zhu, H.; Zhou, L.M.; Zhang, H.H.; Xu, H.L.; Yang, T.Y. Fast triethylamine gas sensing performance based on In2O3 nanocuboids. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 2308–2316. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhu, H.; Yu, S.; Yang, T.; Zhao, H. Facile synthesis of bayberry-like In2O3 architectures derived from metal organic framework for rapid trimethylamine detection at low operating temperature. J. Mater. Sci.-Mater. Electron. 2023, 34, 267. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhu, H.; Yu, S.; Yang, T.; Zhao, H. A MOF-derived porous In2O3 flower-like hierarchical architecture sensor: Near room-temperature preparation and fast trimethylamine sensing performance. New J. Chem. 2023, 47, 10265–10272. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Chuang, M.-Y.; Zan, H.-W.; Meng, H.-F.; Lu, C.-J.; Yeh, P.-H.; Chen, J.-N. One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System. ACS Sens. 2017, 2, 531–539. [Google Scholar] [CrossRef]
- Huang, X.; Lv, R.; Yao, L.; Guan, C.; Han, F.; Teye, E. Non-destructive evaluation of total volatile basic nitrogen (TVB-N) and K-values in fish using colorimetric sensor array. Anal. Methods 2015, 7, 1615–1621. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Zeng, X.-A.; Pu, H.-B. Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2014, 21, 179–187. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Holman, B.W.B.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Wei, Q. Enhancing Visible and Near-Infrared Hyperspectral Imaging Prediction of TVB-N Level for Fish Fillet Freshness Evaluation by Filtering Optimal Variables. Food Anal. Methods 2017, 10, 1888–1898. [Google Scholar] [CrossRef]
Sensor Number | Brand | Model | Target Gas | Heating Voltage (V) | Detection Range (ppm) | Number of Electrodes |
---|---|---|---|---|---|---|
S1 | Figaro | TGS2600 | Hydrogen, Alcohol | 5 | 1~30 | 4 |
S2 | Figaro | TGS2611 | Methane, Natural gas | 5 | 500~10,000 | 4 |
S3 | Figaro | TGS2602 | Ammonia, Hydrogen sulfide | 5 | 1~30 | 4 |
S4 | Figaro | TGS2603 | Trimethylamine, Methyl mercaptan | 5 | 1~10 | 4 |
S5 | Figaro | TGS2620 | Ethanol, Organic solvents | 5 | 50~5000 | 4 |
S6 | Winsen | WSP2110 | Toluene, Formaldehyde | 5 | 1~50 | 4 |
S7 | Winsen | WSP7110 | Hydrogen sulfide | 5 | 0~50 | 4 |
S8 | Winsen | MP702 | Ammonia | 5 | 0~100 | 4 |
S9 | Self-developed | In2O3 nanocuboids | Triethylamine | 4 | 0.5~100 | 6 |
S10 | Self-developed | bayberry-like In2O3 | Trimethylamine | 3.5 | 0.5~100 | 6 |
S11 | Self-developed | flower-like In2O3 | Trimethylamine | 3 | 0.3~100 | 6 |
S12 | Figaro | TGS 832 | Halogenated hydrocarbons, VOCs | 5 | 1~50 | 6 |
TVB-N Content (mg/kg) | Freshness |
---|---|
≤50 | Fresh |
50~250 | Sub-fresh |
≥250 | Spoiled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, D.; Zhu, H.; Yang, T. Reconfigurable Multi-Channel Gas-Sensor Array for Complex Gas Mixture Identification and Fish Freshness Classification. Sensors 2025, 25, 6212. https://doi.org/10.3390/s25196212
Wang H, Wang D, Zhu H, Yang T. Reconfigurable Multi-Channel Gas-Sensor Array for Complex Gas Mixture Identification and Fish Freshness Classification. Sensors. 2025; 25(19):6212. https://doi.org/10.3390/s25196212
Chicago/Turabian StyleWang, He, Dechao Wang, Hang Zhu, and Tianye Yang. 2025. "Reconfigurable Multi-Channel Gas-Sensor Array for Complex Gas Mixture Identification and Fish Freshness Classification" Sensors 25, no. 19: 6212. https://doi.org/10.3390/s25196212
APA StyleWang, H., Wang, D., Zhu, H., & Yang, T. (2025). Reconfigurable Multi-Channel Gas-Sensor Array for Complex Gas Mixture Identification and Fish Freshness Classification. Sensors, 25(19), 6212. https://doi.org/10.3390/s25196212