Abstract
We investigated the repeatability of the MS-39 in determining power vector components—the spherical equivalent (SEQ) and astigmatic powers (C0 and C45) and asphericity (Q)—of corneal epithelium, stroma, and endothelium in a large patient cohort. In this retrospective cross-sectional single-centre study, we evaluated a dataset containing 600 MS-39 anterior segment tomography measurements from 200 eyes (three repeat measurements each) taken prior to cataract surgery. The exported measurements included height map data for the epithelium, stroma, and endothelium surface. Model surfaces (spherocylinder (SphCyl), cylindrical conoid (CylConoid), and biconic (Biconic), all in the 3/6 mm zone) were fitted using nonlinear iterative optimisation, minimising the height difference between the measurement and model. The mean (MEAN) and standard deviation (SD) for each sequence of measurements were derived and analysed. In the 3 mm and 6 mm zone, the MEAN SEQ was 53.47/53.56/53.57 and 53.21/53.54/53.54 D for SphCyl/CylConoid/Biconic for the epithelium, −4.47/−4.51/−4.51 and −4.45/−4.50/−4.50 D for the stroma, and −6.23/−6.26/−6.26 and −6.18/−6.29/−6.30 D for the endothelium. With the three surface models and the 3/6 mm zone, the SD for SEQ/C0/C45 was in the range of 0.04 to 0.11/0.05 to 0.13/0.04 to 0.11 D for epithelium; 0.01 to 0.02/0.01 to 0.05/0.01 to 0.06 D for stroma; and 0.01 to 0.02/0.02 to 0.07/0.03 to 0.07 D for endothelium. Fitting floating model surfaces with astigmatism to map data of the corneal epithelium, stroma, and endothelium seems to be a robust and reliable method for extracting equivalent power and astigmatism using all the datapoints within a region of interest.