Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors
Abstract
1. Introduction
2. Crack-Monitoring Robot with a 2-DoF Manipulator
3. Crack Data Preparation and Detection
3.1. Dataset for Crack Analysis
3.2. Real-Time Deep Learning Network for Crack Detection
3.3. Crack Stitching with the 2-DoF Manipulator
4. Crack Segmentation and Quantification
4.1. Application of Deep Learning Networks for Crack Segmentation
4.2. Crack Quantification Using Contour-Moment Computation
Algorithm 1 Crack-stitching algorithm using MAGSAC++ |
|
5. Experiments
5.1. Experimental Setup
5.2. Experimental Results
6. Conclusions
- The mobile robot successfully performed autonomous navigation and real-time mapping using grid-based SLAM with point cloud data.
- The proposed 2-DoF motorized rotational and linear manipulator, combined with a manual rotation plate, enhanced accessibility and expanded the field of view for crack monitoring.
- For crack detection, YOLOv6-s achieved mAP values of 89.6% for horizontal cracks and 79.6% for vertical cracks.
- For crack segmentation, SFNet (ResNet-18) was selected, yielding IoU values of 71.9% and 71.2% for horizontal and vertical cracks, respectively.
- Three-dimensional crack quantification demonstrated high accuracy, with maximum absolute errors of 7 mm (0.70%) for crack length and 0.15 mm (1.00%) for crack width.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bang, H.; Min, J.; Jeon, H. Deep Learning-Based Concrete Surface Damage Monitoring Method Using Structured Lights and Depth Camera. Sensors 2021, 21, 2759. [Google Scholar] [CrossRef]
- Kong, X.; Li, J. Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing. Autom. Constr. 2019, 99, 125–139. [Google Scholar] [CrossRef]
- Sikorski, W. Acoustic Emission; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Käding, M.; Marx, S. Acoustic Emission Monitoring in Prestressed Concrete: A Comparative Study of Signal Attenuation from Wire Breaks and Rebound Hammer Impulses. Appl. Sci. 2024, 14. [Google Scholar] [CrossRef]
- Jasiūnienė, E.; Mažeika, L.; Samaitis, V.; Cicėnas, V.; Mattsson, D. Ultrasonic non-destructive testing of complex titanium/carbon fibre composite joints. Ultrasonics 2019, 95, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Felice, M.V.; Fan, Z. Sizing of flaws using ultrasonic bulk wave testing: A review. Ultrasonics 2018, 88, 26–42. [Google Scholar] [CrossRef]
- Li, W.; Cho, Y. Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects. Ultrasonics 2016, 65, 87–95. [Google Scholar] [CrossRef]
- Murayama, R.; Ayaka, K. Evaluation of Fatigue Specimens Using EMATs for Nonlinear Ultrasonic Wave Detection. J. Nondestruct. Eval. 2007, 26, 115–122. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Q.; Fang, L. Research on Fatigue Crack Growth Detection of M (T) Specimen Based on Image Processing Technology. J. Fail. Anal. Prev. 2018, 18, 1010–1016. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-Based Automated Crack Detection for Bridge Inspection. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Dinh, T.H.; Ha, Q.P.; La, H.M. Computer vision-based method for concrete crack detection. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Fujita, Y.; Mitani, Y.; Hamamoto, Y. A Method for Crack Detection on a Concrete Structure. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 901–904. [Google Scholar] [CrossRef]
- Sohn, H.G.; Lim, Y.; Yun, K.; Kim, G. Monitoring Crack Changes in Concrete Structures. Comput. Civ. Infrastruct. Eng. 2004, 20, 52–61. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Kam, T.Y.; Cheng, P.Y. An Automatic Approach for Accurate Edge Detection of Concrete Crack Utilizing 2D Geometric Features of Crack. J. Signal Process. Syst. 2014, 77, 221–240. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Zhang, D.; Jin, Y.; Zhang, F.; Li, N.; Li, H. Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images. Struct. Control. Health Monit. 2018, 25, e2075. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Kim, J.M. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network. Sensors 2019, 19, 4251. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Cho, S. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors 2018, 18, 3452. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Ding, S.; Qing, G.; Hu, J. UAV vision detection method for crane surface cracks based on Faster R-CNN and image segmentation. J. Civ. Struct. Health Monit. 2022, 12, 845–855. [Google Scholar] [CrossRef]
- Fu, H.; Meng, D.; Li, W.; Wang, Y. Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+. J. Mar. Sci. Eng. 2021, 9, 671. [Google Scholar] [CrossRef]
- Li, Y.; Ma, R.; Liu, H.; Cheng, G. Real-time high-resolution neural network with semantic guidance for crack segmentation. Autom. Constr. 2023, 156, 105112. [Google Scholar] [CrossRef]
- Hu, X.; Assaad, R.H. The use of unmanned ground vehicles (mobile robots) and unmanned aerial vehicles (drones) in the civil infrastructure asset management sector: Applications, robotic platforms, sensors, and algorithms. Expert Syst. Appl. 2023, 232, 120897. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Z.; Wu, J.; Padir, T.; Hajjar, J.F. Towards automated detection and quantification of concrete cracks using integrated images and lidar data from unmanned aerial vehicles. Struct. Control Health Monit. 2021, 28, e2757. [Google Scholar] [CrossRef]
- Elamin, A.; El-Rabbany, A. UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation. Sensors 2023, 23, 9315. [Google Scholar] [CrossRef]
- Ding, W.; Yang, H.; Yu, K.; Shu, J. Crack detection and quantification for concrete structures using UAV and transformer. Autom. Constr. 2023, 152, 104929. [Google Scholar] [CrossRef]
- Jung, S.; Song, S.; Kim, S.; Park, J.; Her, J.; Roh, K.; Myung, H. Toward Autonomous Bridge Inspection: A framework and experimental results. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019; pp. 208–211. [Google Scholar] [CrossRef]
- Yu, S.N.; Jang, J.H.; Han, C.S. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 2007, 16, 255–261. [Google Scholar] [CrossRef]
- Gibb, S.; La, H.M.; Le, T.; Nguyen, L.; Schmid, R.; Pham, H. Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection. J. Field Robot. 2018, 35, 988–1004. [Google Scholar] [CrossRef]
- Yuan, C.; Xiong, B.; Li, X.; Sang, X.; Kong, Q. A novel intelligent inspection robot with deep stereo vision for three-dimensional concrete damage detection and quantification. Struct. Health Monit. 2022, 21, 788–802. [Google Scholar] [CrossRef]
- Ge, L.; Sadhu, A. Deep learning-enhanced smart ground robotic system for automated structural damage inspection and mapping. Autom. Constr. 2025, 170, 105951. [Google Scholar] [CrossRef]
- Yang, J.S.; Chen, W.; Xiao, X. Pavement damage detection with a novel semi-supervised YOLOv8 network. Measurement 2025, 257, 118860. [Google Scholar] [CrossRef]
- Alkhedher, M.; Alsit, A.; Alhalabi, M.; AlKheder, S.; Gad, A.; Ghazal, M. Novel pavement crack detection sensor using coordinated mobile robots. Transp. Res. Part Emerg. Technol. 2025, 172, 105021. [Google Scholar] [CrossRef]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. LiDAR-based structural health monitoring: Applications in civil infrastructure systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef]
- Shin, J.U.; Jeon, H.; Choi, S.; Kim, Y.; Myung, H. Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring. Smart Struct. Syst. 2016, 18, 801–818. [Google Scholar] [CrossRef]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Kanna, B.R.; AV, S.M.; Hemalatha, C.S.; Rajagopal, M.K. Enhancing SLAM efficiency: A comparative analysis of B-spline surface mapping and grid-based approaches. Appl. Intell. 2024, 54, 10802–10818. [Google Scholar] [CrossRef]
- Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Ou, Y.; Huang, S.X.; Wong, K.K.; Cummock, J.; Volpi, J.; Wang, J.Z.; Wong, S.T. BBox-Guided Segmentor: Leveraging expert knowledge for accurate stroke lesion segmentation using weakly supervised bounding box prior. Comput. Med. Imaging Graph. 2023, 107, 102236. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yi, J.; Shin, C.; Yoon, S. Bbam: Bounding box attribution map for weakly supervised semantic and instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 2643–2652. [Google Scholar]
- Song, C.; Huang, Y.; Ouyang, W.; Wang, L. Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3136–3145. [Google Scholar]
- Wang, W.; Su, C. Automatic concrete crack segmentation model based on transformer. Autom. Constr. 2022, 139, 104275. [Google Scholar] [CrossRef]
- Kulkarni, S.; Singh, S.; Balakrishnan, D.; Sharma, S.; Devunuri, S.; Korlapati, S.C.R. CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In Proceedings of the ECCV 2022: European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer: Cham, Switzerland, 2023; pp. 179–195. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar] [CrossRef]
- Schmid, C.; Mohr, R. Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 530–535. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J. Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties; USAF School of Aviation Medicine: Wright-Patterson AFB, OH, USA, 1951. [Google Scholar]
- OpenCV Modules. Available online: https://docs.opencv.org/4.x/ (accessed on 14 May 2024).
- Barath, D.; Noskova, J.; Ivashechkin, M.; Matas, J. MAGSAC++, a fast, reliable and accurate robust estimator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1304–1312. [Google Scholar]
- Barath, D.; Mishkin, D.; Polic, M.; Förstner, W.; Matas, J. A large-scale homography benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 21360–21370. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. In Readings in Computer Vision; Fischler, M.A., Firschein, O., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1987; pp. 726–740. [Google Scholar] [CrossRef]
- Bangalore Manjunathamurthy, N.; Kiran, M.; Suryaprakash, A. Determinant of homography-matrix-based multiple-object recognition. In Proceedings of the Real-Time Image and Video Processing, Burlingame, CA, USA, 19 February 2013. [Google Scholar] [CrossRef]
- Li, X.; You, A.; Zhu, Z.; Zhao, H.; Yang, M.; Yang, K.; Tan, S.; Tong, Y. Semantic Flow for Fast and Accurate Scene Parsing. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 775–793. [Google Scholar]
- Tang, S.; Sun, T.; Peng, J.; Chen, G.; Hao, Y.; Lin, M.; Xiao, Z.; You, J.; Liu, Y. PP-MobileSeg: Explore the Fast and Accurate Semantic Segmentation Model on Mobile Devices. arXiv 2023, arXiv:2304.05152. [Google Scholar]
- Wang, J.; Gou, C.; Wu, Q.; Feng, H.; Han, J.; Ding, E.; Wang, J. RTFormer: Efficient design for real-time semantic segmentation with transformer. In Proceedings of the NIPS’22: 36th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 10–15 December 2024. [Google Scholar]
- Liu, Y.F.; Nie, X.; Fan, J.S.; Liu, X.G. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 511–529. [Google Scholar] [CrossRef]
- Golewski, G.L. The phenomenon of cracking in cement concretes and reinforced concrete structures: The mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—A review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Yang, J.; Park, S.; Hong, S. The development and performance evaluation of diagonal tension cracks control devices. J. Asian Archit. Build. Eng. 2025, 24, 1374–1384. [Google Scholar] [CrossRef]
- Dai, R.; Wang, R.; Shu, C.; Li, J.; Wei, Z. Crack Detection in Civil Infrastructure Using Autonomous Robotic Systems: A Synergistic Review of Platforms, Cognition, and Autonomous Action. Sensors 2025, 25, 4631. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, Y.; Li, M. A review of computer vision-based crack detection methods in civil infrastructure: Progress and challenges. Remote Sens. 2024, 16, 2910. [Google Scholar] [CrossRef]
Detection Metrics | Average Precision Metrics | ||||
---|---|---|---|---|---|
Precision | Recall | F1 Score | mAP@0.5 | mAP@0.5:0.95 | |
Without SD | 0.74 | 0.53 | 0.62 | 0.59 | 0.40 |
With SD | 0.98 | 0.98 | 0.98 | 0.99 | 0.87 |
Model | mIoU | Params (M) |
---|---|---|
SFNet (ResNet-18) [51] | 81.3% | 13.8 |
HrSegNet [20] | 79.1% | 9.7 |
PP-MobileSeg [52] | 78.4% | 2.9 |
RTFormer [53] | 77.8% | 19.4 |
Horizontal Length | Vertical Length | ||||||||
---|---|---|---|---|---|---|---|---|---|
−50 cm | 0 cm | 50 cm | 100 cm | −50 cm | 0 cm | 50 cm | 100 cm | ||
Case 1 | Absolute error (mm) | 0.14 | 0.11 | 0.13 | 0.32 | 0.45 | 0.02 | 0.26 | 0.56 |
Relative error (%) | 0.24 | 0.18 | 0.22 | 0.53 | 0.75 | 0.03 | 0.44 | 0.94 | |
Case 2 | Absolute error (mm) | 0.28 | 0.36 | 0.06 | 0.22 | 0.17 | 0.15 | 0.20 | 0.22 |
Relative error (%) | 0.46 | 0.60 | 0.11 | 0.37 | 0.28 | 0.25 | 0.33 | 0.36 | |
Case 3 | Absolute error (mm) | 0.42 | 0.08 | 0.42 | 0.24 | 0.18 | 0.13 | 0.18 | 0.51 |
Relative error (%) | 0.70 | 0.14 | 0.70 | 0.41 | 0.30 | 0.22 | 0.30 | 0.85 |
Process | Parameter | Value |
---|---|---|
SLAM | Scan frequency | 1 |
Minimum distance (m) | 1 | |
Minimum angular rot. (rad) | 0.5 | |
Map grid cell size (cm) | 5 | |
Number of particles | 30 | |
Maximum usable range (m) | 80 | |
Obstacle avoidance | Detection distance (cm) | 60 |
Path following | Waypoint reach threshold (m) | 1.1 |
Case | Estimated Length | Estimated Width | ||
---|---|---|---|---|
Abs. Error (mm) | Rel. Error (%) | Abs. Error (mm) | Rel. Error (%) | |
Horizontal crack | ||||
Width: 10 mm; Length: 588 mm | 1 | 0.17 | 0.10 | 1.00 |
Vertical crack | ||||
Width: 39.5 mm; Length: 995 mm | 7 | 0.70 | 0.15 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Jang, D.; Kim, J.; Jeon, H. Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors. Sensors 2025, 25, 6121. https://doi.org/10.3390/s25196121
Yang S, Jang D, Kim J, Jeon H. Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors. Sensors. 2025; 25(19):6121. https://doi.org/10.3390/s25196121
Chicago/Turabian StyleYang, Seola, Daeik Jang, Jonghyeok Kim, and Haemin Jeon. 2025. "Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors" Sensors 25, no. 19: 6121. https://doi.org/10.3390/s25196121
APA StyleYang, S., Jang, D., Kim, J., & Jeon, H. (2025). Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors. Sensors, 25(19), 6121. https://doi.org/10.3390/s25196121