Arc Fault Detection for Photovoltaic Systems Using Independent Component Analysis Technique and Dynamic Time-Warping Algorithm
Abstract
1. Introduction
2. Background: Arc Characteristics
2.1. Independence of the Arc Fault Signal
2.2. Non-Gaussianity of the Arc Fault Signal
3. Method
3.1. Using ICA Technique to Decompose Signals
3.2. Brief Description of ICA Technique
3.3. The Reason Why ICA Can Be Used for Arc Fault Detection
3.4. Using DTW to Determine the Independence Level of ICA Output
4. Experiment
4.1. Experimental Platform
4.2. Experiment Detection Results
4.3. Experiment in Noisy Environment
4.4. Comparative Study
- Fast Fourier Transform (FFT) [6]: FFT is a feature-based detection method which extracts arc frequency domain features to detect arc faults.
- Discrete Wavelet Transform (DWT) [7]: DWT is a feature-based detection method which extracts arc time–frequency domain features to detect arc faults.
- Convolutional Neural Network (CNN) [17]: A CNN is a data-based detection method which uses convolution neural networks to identify arc faults.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuventi, J. DC Electric Arc-Flash Hazard-Risk Evaluations for Photovoltaic Systems. IEEE Trans. Power Deliv. 2014, 29, 161–167. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques. IEEE J. Photovoltaics 2015, 5, 982–997. [Google Scholar] [CrossRef]
- Georgijevic, N.L.; Jankovic, M.V.; Srdic, S.; Radakovic, Z. The Detection of Series Arc Fault in Photovoltaic Systems Based on the Arc Current Entropy. IEEE Trans. Power Electron. 2016, 31, 5917–5930. [Google Scholar] [CrossRef]
- Velasco-Quesada, G.; Guinjoan-Gispert, F.; Piqué-López, R.; Román-Lumbreras, M.; Conesa-Roca, A. Electrical PV Array Reconfiguration Strategy for Energy Extraction Improvement in Grid-Connected PV Systems. IEEE Trans. Ind. Electron. 2009, 56, 4319–4331. [Google Scholar] [CrossRef]
- Ning, X.; Ding, T.; Zhu, H. Research on Arc Fault Detection Based on Conditional Batch Normalization Convolutional Neural Network with Cost-Sensitive Multi-Feature Extraction. Sensors 2024, 24, 7628. [Google Scholar] [CrossRef]
- Xiong, Q.; Ji, S.; Zhu, L.; Zhong, L.; Liu, Y. A Novel DC Arc Fault Detection Method Based on Electromagnetic Radiation Signal. IEEE Trans. Plasma Sci. 2017, 45, 472–478. [Google Scholar] [CrossRef]
- Yao, X.; Herrera, L.; Ji, S.; Zou, K.; Wang, J. Characteristic Studyand Time-Domain Discrete-Wavelet-Transform BasedHybrid Detection of Series DC Arc Faults. IEEE Trans. Power Electron. 2014, 29, 3103–3115. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, S.; Liu, Y. Generation and Developing Process of Low Voltage Series DC Arc. IEEE Trans. Plasma Sci. 2014, 42, 2718–2719. [Google Scholar] [CrossRef]
- Klement, K. DC Arc Flash Studies for Solar Photovoltaic Systems: Challenges and Recommendations. IEEE Trans. Ind. Appl. 2015, 51, 4239–4244. [Google Scholar] [CrossRef]
- Rosen, D.; Simburger, E.J.; Sugimura, R.S. An Overview of the DC Wiring System Design Issues in the SMUD Phase I Photovoltaic Power Plant. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 2394–2398. [Google Scholar] [CrossRef]
- Miao, X.; Guo, Y.; Tang, J.; Zhang, L. Load Side Arc Fault Voltage Detection and Identification with Morphological Wavelet. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2014, 29, 237–244. [Google Scholar]
- Schimpf, F.; Norum, L.E. Recognition of electric arcing in the DC-wiring of photovoltaic systems. In Proceedings of the INTELEC 2009—31st International Telecommunications Energy Conference, Incheon, Republic of Korea, 18–22 October 2009. [Google Scholar]
- Xiong, Q.; Feng, X.; Gattozzi, A.L.; Liu, X.; Zheng, L.; Zhu, L.; Ji, S. Series Arc Fault Detection and Localization in DC Distribution System. IEEE Trans. Instrum. Meas. 2019, 69, 122–134. [Google Scholar] [CrossRef]
- Wang, Z.; Balog, R.S. Arc Fault and Flash Signal Analysis in DC Distribution Systems Using Wavelet Transformation. IEEE Trans. Smart Grid 2015, 6, 1955–1963. [Google Scholar] [CrossRef]
- Sidhu, T.S.; Sa, G.S. Detection and location of low-level arcing faults in metal-clad electrical apparatus. IEEE Xplore 2001, 157–160. [Google Scholar] [CrossRef]
- Momoh, J.A.; Button, R. Design and analysis of aerospace arcing faults using fast fourier transformation and artificial neural network. In Proceeding of the IEEE Power and Energy Society General Meeting, Toronto, ON, Canada, 19–17 July 2003; pp. 788–793. [Google Scholar]
- Patil, D.; Bindu, S. Arc Fault Detection in DC Microgrid Using Deep Neural Network. In Proceedings of the International Conference on Nascent Technologies in Engineering, Navi Mumbai, India, 15–16 January 2021. [Google Scholar]
- Lu, S.; Sirojan, T.; Phung, B.T.; Zhang, D.; Ambikairajah, E. DA-DCGAN: An Effective Methodology for DC Series Arc FaultDiagnosis in Photovoltaic Systems. IEEE Access 2019, 7, 45831–45840. [Google Scholar] [CrossRef]
- Papadias, C.B. Globally convergent blind source separation based on a multiuser kurtosis maximization criterion. Signal Process. IEEE Trans. 2000, 48, 3508–3519. [Google Scholar] [CrossRef]
- Kingeski, R.; Henning, E.; Paterno, A.S. Fusion of PCA and ICA in Statistical Subset Analysis for Speech Emotion Recognition. Sensors 2024, 24, 5704. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Second Edition. Publ. Am. Stat. Assoc. 1992, 103, 429. [Google Scholar]
- Han, Y.; Ordentlich, O.; Shayevitz, O. Mutual Information Bounds via Adjacency Events. Inf. Theory IEEE Trans. 2016, 62, 6068–6080. [Google Scholar] [CrossRef]
- Han, T.; Liu, X.; Tan, A.C.C. Fault diagnosis of rolling element bearings based on Multiscale Dynamic Time Warping. Measurement 2016, 95, 355–366. [Google Scholar] [CrossRef]
- Choudhury, M.D.; Hong, L.; Dhupia, J.S. A Methodology to Handle Spectral Smearing in Gearboxes Using Adaptive Mode Decomposition and Dynamic Time Warping. IEEE Trans. Instrum. Meas. 2021, 70, 3510910. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Zhang, L.; Liang, D.; Zhu, Q.; Liu, X.; Lv, Z.; Dou, X.; Gou, Y. Research on Correlation Analysis Method of Time Series Features Based on Dynamic Time Warping Algorithm. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2000405. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Y.; Xie, Z.; Li, X. Feature Selection and Detection Method of Weak Arc Faults in Photovoltaic Systems With Strong Noises Based on Stochastic Resonance. IEEE Trans. Instrum. Meas. 2022, 71, 3515213. [Google Scholar] [CrossRef]
Method Type | Parameter Configuration | Detection Time |
---|---|---|
FFT | 4096 sampling points | 50 s |
DWT | 6-layer db4 decomposition | 200 s |
CNN | 4-layer, 20 neurons/layer | 5 ms |
Our method | 4096 sampling points | 220 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Ding, S.; Li, G.; Wang, Q. Arc Fault Detection for Photovoltaic Systems Using Independent Component Analysis Technique and Dynamic Time-Warping Algorithm. Sensors 2025, 25, 6094. https://doi.org/10.3390/s25196094
Xu J, Ding S, Li G, Wang Q. Arc Fault Detection for Photovoltaic Systems Using Independent Component Analysis Technique and Dynamic Time-Warping Algorithm. Sensors. 2025; 25(19):6094. https://doi.org/10.3390/s25196094
Chicago/Turabian StyleXu, Jiazi, Shuo Ding, Guoli Li, and Qunjing Wang. 2025. "Arc Fault Detection for Photovoltaic Systems Using Independent Component Analysis Technique and Dynamic Time-Warping Algorithm" Sensors 25, no. 19: 6094. https://doi.org/10.3390/s25196094
APA StyleXu, J., Ding, S., Li, G., & Wang, Q. (2025). Arc Fault Detection for Photovoltaic Systems Using Independent Component Analysis Technique and Dynamic Time-Warping Algorithm. Sensors, 25(19), 6094. https://doi.org/10.3390/s25196094