A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer
Abstract
Highlights
- Acid–base synthesis is employed as a convenient method for developing a low-cost sensor for iron ions, even in acidic, high ionic strength environments.
- A “low-cost” set-up using carbon dots with minimal processing and a compact, lab-built fiber optic spectrometer demonstrates low parts-per-million limits of detection for iron.
- Coupling low-cost fiber optic instrumentation with inexpensive yet highly sensitive carbon dot materials presents a promising avenue for environmental monitoring and process optimization.
- The synthesis of carbon dots through an acid–base approach may be used for the rational design of new metal ion sensors.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Purified CDs
3.2. Sensing Performance Evaluation on Commercial Spectrometer
3.3. Low-Cost Sensor Approach
3.4. CD Test Strips for Iron Analysis
3.5. Mechanism for Iron Ion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDs | Carbon dots |
LED | Light-emitting diode |
UV | Ultraviolet |
XPS | X-ray photoelectron spectroscopy |
FTIR-ATR | Fourier transform infrared spectroscopy attenuated total reflectance |
HRTEM | High-resolution transmission electron microscopy |
XRD | X-ray diffraction |
ICP-MS | Inductively coupled plasma mass spectrometry |
AMD | Acid mine drainage |
References
- Vivoda, V.; Matthews, R.; Andresen, J. Securing defense critical minerals: Challenges and US strategic responses in an evolving geopolitical landscape. Comp. Strategy 2025, 44, 281–315. [Google Scholar] [CrossRef]
- Pavel, C.C.; Marmier, A.; Tzimas, E.; Schleicher, T.; Schüler, D.; Buchert, M.; Blagoeva, D. Critical raw materials in lighting applications: Substitution opportunities and implication on their demand. Phys. Status Solidi (a) 2016, 213, 2937–2946. [Google Scholar] [CrossRef]
- Kalantzakos, S. The race for critical minerals in an era of geopolitical realignments. Int. Spect. 2020, 55, 1–16. [Google Scholar] [CrossRef]
- Dou, S.; Xu, D.; Zhu, Y.; Keenan, R. Critical mineral sustainable supply: Challenges and governance. Futures 2023, 146, 103101. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef]
- Able, C.; Schmitt, T.; Siefert, N.; Fritz, A. Baseline Cost Analysis of Energy Wastewater Treatment with Preliminary Feasibility Analysis of Critical Mineral Recovery. Minerals 2025, 15, 213. [Google Scholar] [CrossRef]
- Montross, S.N.; Bagdonas, D.; Paronish, T.; Bean, A.; Gordon, A.; Creason, C.G.; Thomas, B.; Phillips, E.; Britton, J.; Quillian, S. On a unified core characterization methodology to support the systematic assessment of rare earth elements and critical minerals bearing unconventional carbon ores and sedimentary strata. Minerals 2022, 12, 1159. [Google Scholar] [CrossRef]
- Franus, W.; Wiatros-Motyka, M.M.; Wdowin, M. Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. 2015, 22, 9464–9474. [Google Scholar] [CrossRef]
- Fritz, A.G.; Tarka, T.J.; Mauter, M.S. Technoeconomic assessment of a sequential step-leaching process for rare earth element extraction from acid mine drainage precipitates. ACS Sustain. Chem. Eng. 2021, 9, 9308–9316. [Google Scholar] [CrossRef]
- Stoy, L.; Kulkarni, Y.; Huang, C.-H. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environ. Sci. Technol. 2022, 56, 5150–5160. [Google Scholar] [CrossRef]
- Gupta, T.; Nawab, A.; Honaker, R. Removal of iron from pyrite-rich coal refuse by calcination and magnetic separation for hydrometallurgical extraction of rare earth elements. Minerals 2023, 13, 327. [Google Scholar] [CrossRef]
- Pavón, S.; Haneklaus, N.; Meerbach, K.; Bertau, M. Iron (III) removal and rare earth element recovery from a synthetic wet phosphoric acid solution using solvent extraction. Miner. Eng. 2022, 182, 107569. [Google Scholar] [CrossRef]
- Opitz, J.; Alte, M.; Bauer, M.; Peiffer, S. Quantifying iron removal efficiency of a passive mine water treatment system using turbidity as a proxy for (particulate) iron. Appl. Geochem. 2020, 122, 104731. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ohodnicki, P.R.; Baltrus, J.P. Materials for the photoluminescent sensing of rare earth elements: Challenges and opportunities. J. Mater. Chem. C 2020, 8, 7975–8006. [Google Scholar] [CrossRef]
- Wu, Z.; Crawford, S.E.; Buric, M.; Splain, Z.; Chen, K.P. Development of a Low-cost, Sensitivity-optimized Fluorescence Sensor for Visible Spectrum Analysis. IEEE Sens. J. 2023, 23, 11574–11581. [Google Scholar] [CrossRef]
- Crawford, S.E.; Kim, K.J.; Baltrus, J.P. A portable fiber optic sensor for the luminescent sensing of cobalt ions using carbon dots. J. Mater. Chem. C 2022, 10, 16506–16516. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, S.; Jiang, C. Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Adv. 2017, 7, 40973–40989. [Google Scholar] [CrossRef]
- Zhou, Y.; Benetti, D.; Tong, X.; Jin, L.; Wang, Z.M.; Ma, D.; Zhao, H.; Rosei, F. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 2018, 44, 378–387. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, Y.; Sun, X.; Bai, Z.; Zhang, Y.; Zhou, X. Surface modification and chemical functionalization of carbon dots: A review. Microchim. Acta 2018, 185, 424. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.Y.; Lou, Q.; Zang, J.H.; Liu, Z.Y.; Ye, Y.L.; Shen, C.L.; Zhao, W.B.; Dong, L.; Shan, C.X. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency. Adv. Opt. Mater. 2020, 8, 1901938. [Google Scholar] [CrossRef]
- Strickland, S.; Fourroux, L.; Pappas, D. Effect of precursors on carbon dot functionalization and applications: A review. Analyst 2025, 150, 1448–1469. [Google Scholar] [CrossRef]
- Miao, S.; Liang, K.; Zhu, J.; Yang, B.; Zhao, D.; Kong, B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020, 33, 100879. [Google Scholar] [CrossRef]
- Wu, J.; Chen, G.; Jia, Y.; Ji, C.; Wang, Y.; Zhou, Y.; Leblanc, R.M.; Peng, Z. Carbon dot composites for bioapplications: A review. J. Mater. Chem. B 2022, 10, 843–869. [Google Scholar] [CrossRef]
- Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchim. Acta 2019, 186, 583. [Google Scholar] [CrossRef]
- Shabbir, H.; Csapó, E.; Wojnicki, M. Carbon quantum dots: The role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics 2023, 11, 262. [Google Scholar] [CrossRef]
- Šafranko, S.; Goman, D.; Stanković, A.; Medvidović-Kosanović, M.; Moslavac, T.; Jerković, I.; Jokić, S. An overview of the recent developments in carbon quantum dots—Promising nanomaterials for metal ion detection and (bio) molecule sensing. Chemosensors 2021, 9, 138. [Google Scholar] [CrossRef]
- Gao, X.; Du, C.; Zhuang, Z.; Chen, W. Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C 2016, 4, 6927–6945. [Google Scholar] [CrossRef]
- Sushma; Sharma, S.; Ghosh, K.S. Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron (III). J. Fluoresc. 2025, 35, 1255–1272. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Salma, U.; Alam, M.Z.; Mujeeb, M.A.; Ansari, R.u.H.; Basha, H.A.; Alimuddin; Khan, S.A. Fluorescent/Photoluminescent Carbon Dots as a Sensor for the Selective and Sensitive Detection of Fe3+/Fe2+ Metal Ions. A Review of the Last Decade. J. Fluoresc. 2025, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Karimi-Maleh, H.; Liu, Y.; Xie, Q.; He, Y.; Fan, W.; Zare, N.; Zhong, N. Recent advances in optical sensors for trace Iron-ion concentration. Coord. Chem. Rev. 2025, 545, 217024. [Google Scholar] [CrossRef]
- Bartolomei, B.; Dosso, J.; Prato, M. New trends in nonconventional carbon dot synthesis. Trends Chem. 2021, 3, 943–953. [Google Scholar] [CrossRef]
- Du, F.; Shuang, S.; Guo, Z.; Gong, X.; Dong, C.; Xian, M.; Yang, Z. Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes. Talanta 2020, 206, 120243. [Google Scholar] [CrossRef]
- Wang, H.; Mu, W.; Wang, S.; Shi, L.; Ma, T.; Lu, Y. Facile synthesis of NS-doped carbon dots as sensitive “ON-OFF-ON” fluorescent sensor for Cu2+ and GSH detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Hao, Y.; Dong, W.; Liu, Y.; Song, S.; Shuang, S.; Dong, C.; Gong, X. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag+ and l-cysteine based on NPCl-doped carbon quantum dots. Anal. Chim. Acta 2021, 1144, 1–13. [Google Scholar] [CrossRef]
- Zuo, P.; Chen, Z.; Yu, F.; Zhang, J.; Zuo, W.; Gao, Y.; Liu, Q. An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Adv. 2020, 10, 32919–32926. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Hu, Q.; Guo, X.; Li, L.; Shuang, S.; Gong, X.; Dong, C. Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B12 and cobalt (II). Microchim. Acta 2019, 186, 506. [Google Scholar] [CrossRef]
- Li, J.; Jiao, Y.; Feng, L.; Zhong, Y.; Zuo, G.; Xie, A.; Dong, W. Highly N, P-doped carbon dots: Rational design, photoluminescence and cellular imaging. Microchim. Acta 2017, 184, 2933–2940. [Google Scholar] [CrossRef]
- McEnroe, A.; Brunt, E.; Mosleh, N.; Yu, J.; Hailstone, R.; Sun, X. Bright, green fluorescent carbon dots for sensitive and selective detection of ferrous ions. Talanta Open 2023, 7, 100236. [Google Scholar] [CrossRef]
- Arkin, K.; Zheng, Y.; Hao, J.; Zhang, S.; Shang, Q. Polychromatic carbon dots prepared from m-phenylenediamine and urea as multifunctional fluorescent probes. ACS Appl. Nano Mater. 2021, 4, 8500–8510. [Google Scholar] [CrossRef]
- Fatkhutdinova, L.I.; Barhum, H.; Gerasimova, E.N.; Attrash, M.; Kolchanov, D.S.; Vazhenin, I.I.; Timin, A.S.; Ginzburg, P.; Zyuzin, M.V. Metal ion sensing with phenylenediamine quantum dots in blood serum. ACS Appl. Nano Mater. 2023, 6, 23130–23141. [Google Scholar] [CrossRef]
- Hashemi, N.; Mousazadeh, M.H. Preparation of fluorescent nitrogen-doped carbon dots for highly selective on-off detection of Fe3+ ions in real samples. Opt. Mater. 2021, 121, 111515. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Q.; Hu, S. Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions. Sens. Actuators B Chem. 2017, 253, 928–933. [Google Scholar] [CrossRef]
- Crawford, S.E.; Kim, K.-J.; Diemler, N.; Baltrus, J.P. Efficient and Rapid Synthesis of a Solvent and Ion-Responsive Luminescent Copper 2-Aminoterephthalate Thin Film. ACS Appl. Opt. Mater. 2023, 1, 587–597. [Google Scholar] [CrossRef]
- Ahern, J.C.; Poole, Z.L.; Baltrus, J.; Ohodnicki, P.R. Portable luminescence based fiber optic probe for REE detection and quantification. IEEE Sens. J. 2017, 17, 2644–2648. [Google Scholar] [CrossRef]
- Crawford, S.E.; Burgess, W.A.; Kim, K.-J.; Baltrus, J.P.; Diemler, N.A. Zinc adeninate metal–organic framework-coated optical fibers for enhanced luminescence-based detection of rare earth elements. RSC Appl. Interfaces 2024, 1, 689–698. [Google Scholar] [CrossRef]
- Yang, Y.; Huo, D.; Wu, H.; Wang, X.; Yang, J.; Bian, M.; Ma, Y.; Hou, C. N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sens. Actuators B Chem. 2018, 274, 296–303. [Google Scholar] [CrossRef]
- Šafranko, S.; Janđel, K.; Kovačević, M.; Stanković, A.; Dutour Sikirić, M.; Mandić, Š.; Széchenyi, A.; Glavaš Obrovac, L.; Leventić, M.; Strelec, I. A Facile synthetic approach toward obtaining N-Doped carbon quantum dots from citric acid and amino acids, and their application in selective detection of Fe (III) ions. Chemosensors 2023, 11, 205. [Google Scholar] [CrossRef]
- Clermont-Paquette, A.; Mendoza, D.-A.; Sadeghi, A.; Piekny, A.; Naccache, R. Ratiometric sensing of glyphosate in water using dual fluorescent carbon dots. Sensors 2023, 23, 5200. [Google Scholar] [CrossRef]
- España, J.S. The behavior of iron and aluminum in acid mine drainage: Speciation, mineralogy, and environmental significance. In Thermodynamics, Solubility and Environmental Issues; Elsevier: Amsterdam, The Netherlands, 2007; pp. 137–150. [Google Scholar]
- Hu, X.; Yang, H.; Tan, K.; Hou, S.; Cai, J.; Yuan, X.; Lan, Q.; Cao, J.; Yan, S. Treatment and recovery of iron from acid mine drainage: A pilot-scale study. J. Environ. Chem. Eng. 2022, 10, 106974. [Google Scholar] [CrossRef]
- Mohan, D.; Chander, S. Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent. J. Hazard. Mater. 2006, 137, 1545–1553. [Google Scholar] [CrossRef]
- Smith, A.M.; Johnston, K.A.; Crawford, S.E.; Marbella, L.E.; Millstone, J.E. Ligand density quantification on colloidal inorganic nanoparticles. Analyst 2017, 142, 11–29. [Google Scholar] [CrossRef]
- Hu, Y.; Seivert, O.; Tang, Y.; Karahan, H.E.; Bianco, A. Carbon dot synthesis and purification: Trends, challenges and recommendations. Angew. Chem. Int. Ed. 2024, 63, e202412341. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Mahata, M.K.; Kumar, K. Enhancing the upconversion luminescence properties of Er3+–Yb3+ doped yttrium molybdate through Mg2+ incorporation: Effect of laser excitation power on temperature sensing and heat generation. New J. Chem. 2019, 43, 5960–5971. [Google Scholar] [CrossRef]
- Kao, S.; Asanov, A.N.; Oldham, P.B. A comparison of fluorescence inner-filter effects for different cell configurations. Instrum. Sci. Technol. 1998, 26, 375–387. [Google Scholar] [CrossRef]
- Conradie, M.M. UV-Vis spectroscopy, electrochemical and DFT study of tris (β-diketonato) iron (III) complexes with application in DSSC: Role of aromatic thienyl groups. Molecules 2022, 27, 3743. [Google Scholar] [CrossRef]
- Coutinho, A.; Prieto, M. Ribonuclease T1 and alcohol dehydrogenase fluorescence quenching by acrylamide: A laboratory experiment for undergraduate students. J. Chem. Educ. 1993, 70, 425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adkisson, A.; Gouramanis, D.; Kim, K.-J.; Burgess, W.; Siefert, N.; Crawford, S. A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer. Sensors 2025, 25, 6066. https://doi.org/10.3390/s25196066
Adkisson A, Gouramanis D, Kim K-J, Burgess W, Siefert N, Crawford S. A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer. Sensors. 2025; 25(19):6066. https://doi.org/10.3390/s25196066
Chicago/Turabian StyleAdkisson, Ariana, Dean Gouramanis, Ki-Joong Kim, Ward Burgess, Nicholas Siefert, and Scott Crawford. 2025. "A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer" Sensors 25, no. 19: 6066. https://doi.org/10.3390/s25196066
APA StyleAdkisson, A., Gouramanis, D., Kim, K.-J., Burgess, W., Siefert, N., & Crawford, S. (2025). A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer. Sensors, 25(19), 6066. https://doi.org/10.3390/s25196066