Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Data for CA Evaluation
2.2. Time-Frequency Analysis of CA Characteristics
- -
- time intervals at which consistent oscillations of the BP and BFV occur in the range of Mayer waves;
- -
- a specific frequency of the coordinated oscillations of the BP and BFV from the range of Mayer waves;
- -
- coherence function of the BP and BFV oscillations at the frequency ;
- -
- PS between BP and BFV at the frequency .
2.2.1. Short-Time Fourier Transforms
2.2.2. Continuous Wavelet Transform (CWT)
2.3. Wavelet Transform of Signals Characterizing CA
3. Results
- -
- correctness of classification of intervals of presence or absence of coherence of BP and BFV signals;
- -
- accuracy of determining the coherence of signals in the frequency range of interest;
- -
- estimation accuracy of the Mayer waves range corresponding to the maximum coherence in the interval (50 mHz–150 mHz);
- -
- estimation accuracy of the PS between the BP and BFV signals at the Mayer waves range.
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olesen, J. Quantitative evaluation of normal and pathologic cerebral blood regulation to perfusion pressure: Changes in man. Arch. Neurol. 1973, 28, 143–149. [Google Scholar] [CrossRef]
- Aaslid, R.; Markwalder, T.M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Kontos, H. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 1989, 20, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.; Wim, H. Transcranial Doppler in cerebral vasospasm. Neurosurg. Clin. N. Am. 1990, 1, 319–328. [Google Scholar] [CrossRef]
- Lewis, S.B.; Wong, M.L.; Bannan, P.E.; Piper, I.R.; Reilly, P.L. Transcranial Doppler identification of changing autoregulatory thresholds after autoregulatory impartment. Neurosurgery 2001, 48, 369–375; discussion 375–376. [Google Scholar] [PubMed]
- Smielewski, P.; Czosnyka, M.; Zabolotny, W.; Kirckpatrick, P.; Richards, H.; Picard, J. A computing system for the clinical and experimental investigation of cerebrovascular reactivity. Int. J. Clin. Monit. Comput. 1997, 14, 185–198. [Google Scholar] [CrossRef]
- Kuo, T.C.; Chern, C.C.; Yang Hsu, H.-Y.; Wong, W.-J.; Sheng, W.Y.; Hu, H.-H. Mechanisms underlying phase lag between systemic arterial blood pressure and cerebral blood flow velocity. Cerebrovasc. Dis. 2003, 16, 402–409. [Google Scholar] [CrossRef]
- Soehle, M.; Czosnyka, M.; Pickard, J.D.; Kirkpatrick, P.J. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth. Analg. 2004, 98, 1133–1139. [Google Scholar] [CrossRef]
- Van Beek, A.H.; Claassen, J.; Rikkert, M.; Jansen, R. Cerebral autoregulation on overview of current concepts and methodology with special focus on the elderly. J. Cereb. Blood Flow Metab. 2008, 28, 1071–1085. [Google Scholar] [CrossRef]
- Panerai, R. Transcranial Doppler for evaluation of cerebral autoregulation. Cerebral autoregulation dynamics in premature newborns. Clin. Auton. Res. 2009, 19, 197–211. [Google Scholar] [CrossRef]
- Porras, S.; Santos, E.; Czosnyka, M.; Zheng, Z.; Unterberg, A.W.; Sakowitz, O.W. Long pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcomes in traumatic brain injury patients. Acta Neurochir. 2012, 154, 1575–1581. [Google Scholar] [CrossRef]
- Thudium, M.; Moestl, S.; Hoffmann, F.; Hoff, A.; Kornilov, E.; Heusser, K.; Tank, J.; Soehle, M. Cerebral blood flow autoregulation assessment by correlation analysis between mean arterial blood pressure and transcranial doppler sonography or near infrared spectroscopy is different: A pilot study. PLoS ONE 2023, 18, e0287578. [Google Scholar] [CrossRef]
- Van Zijl, N.; Banerjee, A.; Payne, S.J. Modeling the Mechanisms of Non-Neurogenic Dynamic Cerebral Autoregulation. IEEE Trans. Biomed. Eng. 2025, 72, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zuckerman, J.; Iwasaki, K.; Wilson Th Crandall, C.; Levine, B. Autonomic Neural Control of Dynamic Cerebral Autoregulation in Humans. Circulation 2002, 106, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.; Abeelen, A.M.; Simpson, D.M.; Panerai, R. Transfer function analysis of dynamic cerebral autoregulation research network. J. Cereb. Blood Flow Metab. 2016, 36, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wan, W.; Xiang, M.; Guan, Y. Transcranial Doppler Ultrasonography as a Diagnostic Tool for Cerebrovascular Disorders. Front. Hum. Neurosci. 2022, 16, 841809. [Google Scholar] [CrossRef]
- Panerai, R.B.; Alshehri, A.; Beishon, L.C.; Davies, A.; Haunton, V.J.; Katsogridakis, E.; Lam, M.Y.; Llwyd, O.; Robinson, T.G.; Minhas, J.S. Determinants of the dynamic cerebral critical closing pressure response to changes in mean arterial pressure. Physiol. Meas. 2024, 45, 065006. [Google Scholar] [CrossRef]
- Watanabe, H.; Washio, T.; Saito, S.; Hirasawa, A.; Suzuki, R.; Shibata, S.; Brothers, R.M.; Ogoh, S. Validity of transcranial Doppler ultrasonography-determined dynamic cerebral autoregulation estimated using transfer function analysis. J. Clin. Monit. Comput. 2022, 36, 1711–1721. [Google Scholar] [CrossRef]
- Panerai, R.B.; Brassard, P.; Burma, J.S.; Castro, P.; Claassen, J.A.; van Lieshout, J.J.; Liu, J.; Lucas, S.J.; Minhas, J.S.; Mitsis, G.D.; et al. Cerebrovascular Research Network (CARNet). Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J. Cereb. Blood Flow Metab. 2023, 43, 3–25. [Google Scholar] [CrossRef]
- Liu, X.; Hu, X.; Brady, K.M.; Koehler, R.; Smielewski, P.; Czosnyka, M.; Donnelly, J.; Lee, J.K. Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest. Sci. Rep. 2020, 10, 5926. [Google Scholar] [CrossRef]
- Tian, F.; Tarumi, T.; Liu, H.; Zhang, R.; Chalak, L. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy. NeuroImage Clin. 2016, 11, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tekes, A.; Perin, J.; Chen, M.; Soares, S.; Massaro, A.; Govindan, R.; Parkinson, C.; Chavez-Valdez, R.; Northington, F.; et al. Wavelet Autoregulation Monitoring Identifies Blood Pressures Associated with Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy. Front. Neurol. 2021, 12, 662839. [Google Scholar] [CrossRef]
- Malykhina, G.; Salnikov, V.; Semenyutin, V.; Tarkhov, D. Digitalization of medical services for detecting violations of cerebrovascular regulation based on a neural network signal analysis algorithm. In Proceedings of the SPBPU IDE’20: Proceedings of the 2nd International Scientific Conference on Innovations in Digital Economy, Saint Petersburg, Russia, 22–23 October 2020; Volume 61, pp. 1–11. [Google Scholar] [CrossRef]
- Li, S.; Ma, S.; Wang, S. Optimal Complex Morlet Wavelet Parameters for Quantitative Time-Frequency Analysis of Molecular Vibration. Appl. Sci. 2023, 13, 2734. [Google Scholar] [CrossRef]
- Rhif, M.; Ben Abbes, A.; Farah, I.; Martinez, B.; Sang, Y. Wavelet transform application for/in Non-Stationary Triesime-Se Analysis: A Review. Appl. Sci. 2019, 9, 1345. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Kulaichev, A.P. About the informativity of coherent analysis in the EEG studies. J. High. Nerv. Act. 2009, 59, 757–767. (in Russian). [Google Scholar]
- Malykhina, G.; Salnikov, V.; Semenyutin, V. Neural network algorithm for the diagnosis of impaired cerebral autoregulation. In Proceedings of the International Conference on Neuroinformatics 2020, Moscow, Russia, 12–16 October 2020; pp. 82–92. [Google Scholar]
- Semenyutin, V.; Antonov, V.; Malykhina, G.; Salnikov, V. Investigation of Cerebral Autoregulation Using Time-Frequency Transformations. Biomedicines 2022, 10, 3057. [Google Scholar] [CrossRef]
- Brady, K.; Joshi, B.; Zweifel, C.; Smielewski, P.; Czosnyka, M.; Easley, R.B.; Hogue, C.W., Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010, 41, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Nasyrov, A. Application of the Empirical Mode Decomposition Method for Processing Complex Signals. “Modern Problems of Remote Sensing, Radar, Wave Propagation and Diffraction”. Murom, 2024. Available online: https://cyberleninka.ru/article/n/primenenie-metoda-empiricheskoy-modovoy-dekompozitsii-dlya-obrabotki-signalov-slozhnoy-formy (accessed on 21 September 2025). (In Russian).
- Maheshwari, S.; Ankur Kumar, A. Empirical Mode Decomposition: Theory & Applications. Int. J. Electron. Electr. Eng. 2024, 7, 873–878. [Google Scholar]
- Antonov, V.I.; Malykhina, G.F.; Semenyutin, V.B. Measuring and computing models of cerebral autoregulation for digital personalized medicine. In Proceedings of the IMEKO TC6 International Conference on Metrology and Digital Transformation, Berlin, Germany, 19–21 September 2022; Curran Associates, Inc.: Red Hook, NY, USA, 2022; pp. 30–34, ISBN 978-1-7138-6223-9. Available online: https://www.proceedings.com/content/066/066087webtoc.pdf (accessed on 21 September 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenyutin, V.; Antonov, V.; Malykhina, G.; Nikiforova, A.; Panuntsev, G.; Salnikov, V.; Vesnina, A. Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time. Sensors 2025, 25, 6060. https://doi.org/10.3390/s25196060
Semenyutin V, Antonov V, Malykhina G, Nikiforova A, Panuntsev G, Salnikov V, Vesnina A. Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time. Sensors. 2025; 25(19):6060. https://doi.org/10.3390/s25196060
Chicago/Turabian StyleSemenyutin, Vladimir, Valeriy Antonov, Galina Malykhina, Anna Nikiforova, Grigory Panuntsev, Vyacheslav Salnikov, and Anastasiya Vesnina. 2025. "Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time" Sensors 25, no. 19: 6060. https://doi.org/10.3390/s25196060
APA StyleSemenyutin, V., Antonov, V., Malykhina, G., Nikiforova, A., Panuntsev, G., Salnikov, V., & Vesnina, A. (2025). Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time. Sensors, 25(19), 6060. https://doi.org/10.3390/s25196060