Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data
Abstract
1. Introduction
2. Methods
2.1. Polarimetric SAR
2.2. Polarimetric Vector Interferometry
2.3. Polarimetric Phase Optimization for DSs
2.4. Polarimetric Interferometric Phase Optimization
2.5. Time-Series Polarimetric Optimization
3. Study Area and Dataset
4. Results
4.1. Phase Quality Assessment Based on Temporal Phase Coherence
4.2. Interferogram Processing Results
4.3. Time-Series Deformation Monitoring Results
5. Discussion
5.1. Comparative Consistency of TSI and PolTSI
5.2. Time-Series Monitoring Capability Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Shao, Y.; Liu, Z.; Riedel, B.; Sowter, A.; Niemeier, W.; Bian, Z. Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sens. 2014, 6, 1476–1495. [Google Scholar] [CrossRef]
- Witkowski, W.T.; Mrocheń, D.; Sopata, P.; Stoch, T. Integration of the leveling observations and PSInSAR results for monitoring deformations caused by underground mining. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 6614–6617. [Google Scholar]
- Lian, X.; Li, Z.; Yuan, H.; Hu, H.; Cai, Y.; Liu, X. Determination of the stability of high-steep slopes by global navigation satellite system (GNSS) real-time monitoring in long wall mining. Appl. Sci. 2020, 10, 1952. [Google Scholar] [CrossRef]
- Even, M.; Schulz, K. InSAR deformation analysis with distributed scatterers: A review complemented by new advances. Remote Sens. 2018, 10, 744. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A review of time-series interferometric SAR techniques: A tutorial for surface deformation analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Wang, H.; Sun, Q. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over wuhan in central china revealed by terrasar-X insar analysis. Remote Sens. 2016, 8, 350. [Google Scholar] [CrossRef]
- Bianchini Ciampoli, L.; Gagliardi, V.; Clementini, C.; Latini, D.; Del Frate, F.; Benedetto, A. Transport infrastructure monitoring by InSAR and GPR data fusion. Surv. Geophys. 2020, 41, 371–394. [Google Scholar] [CrossRef]
- Du, S.; Wang, Y.; Zheng, M.; Zhou, D.; Xia, Y. Goaf Locating Based on InSAR and Probability Integration Method. Remote Sens. 2019, 11, 812. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, X.; Tan, H.; Yuan, J. Integrated high-precision monitoring method for surface subsidence in mining areas using D-InSAR, SBAS, and UAV technologies. Sci. Rep. 2024, 14, 12445. [Google Scholar] [CrossRef]
- Declercq, P.Y.; Dusar, M.; Pirard, E.; Verbeurgt, J.; Choopani, A.; Devleeschouwer, X. Post mining ground deformations transition related to coal mines closure in the Campine Coal Basin, Belgium, evidenced by three decades of MT-InSAR data. Remote Sens. 2023, 15, 725. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Wang, W.; Chen, B.; Sun, X. Monitoring mining activities using Sentinel-1A InSAR coherence in open-pit coal mines. Remote Sens. 2021, 13, 4485. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Tang, Y.; Zhang, H.; Fu, Q. Analysis of ground subsidence at a coal-mining area in Huainan using time-series InSAR. Int. J. Remote Sens. 2015, 36, 5790–5810. [Google Scholar] [CrossRef]
- Di Traglia, F.; Intrieri, E.; Nolesini, T.; Bardi, F.; Del Ventisette, C.; Ferrigno, F.; Frangioni, S.; Frodella, W.; Gigli, G.; Lotti, A.; et al. The ground-based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity. Bull. Volcanol. 2014, 76, 786. [Google Scholar] [CrossRef]
- Dawson, J.; Tregoning, P. Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Wu, Q.; Ge, D.; Yu, J.; Zhang, L.; Ma, Y.; Chen, Y.; Wan, X.; Wang, Y.; Zhang, L. Active deformation areas of potential landslide mapping with a generalized convolutional neural network. Remote Sens. 2024, 16, 1090. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.; Hu, J.; Li, Z.; Zhu, J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens. Environ. 2015, 156, 45–57. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. Isprs J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Hooper, A.; Spaans, K.; Bekaert, D.; Cuenca, M.C.; Arıkan, M.; Oyen, A. StaMPS/MTI manual. Delft Inst. Earth Obs. Space Syst. Delft Univ. Technol. Kluyverweg 2010, 1, 2629. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Bai, Z.; Zhao, F.; Wang, J.; Li, J.; Wang, Y.; Li, Y.; Lin, Y.; Shen, W. Revealing Long-Term Displacement and Evolution of Open-Pit Coal Mines Using SBAS-InSAR and DS-InSAR. Remote Sens. 2025, 17, 1821. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Zhao, F.; Wang, T.; Zhang, K.; Fan, H.; Zhou, D.; Zhang, L.; Yan, S.; Diao, X.; et al. Monitoring and analysis of the collapse at Xinjing Open-Pit Mine, Inner Mongolia, China, using multi-source remote sensing. Remote Sens. 2024, 16, 993. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Fornaro, G.; Verde, S.; Reale, D.; Pauciullo, A. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2050–2065. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Hanssen, R.F.; Malhotra, R.; Chang, L. Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1213–1224. [Google Scholar] [CrossRef]
- Shen, P.; Wang, C.; Hu, C.; Hu, J.; Fu, H.; Zhu, J. JPPL: A joint-polarization phase linking algorithm for phase optimization of TSPolInSAR data. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102889. [Google Scholar] [CrossRef]
- Shamshiri, R.; Nahavandchi, H.; Motagh, M. Persistent Scatterer Analysis Using Dual-Polarization Sentinel-1 Data: Contribution from VH Channel. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3105–3112. [Google Scholar] [CrossRef]
- Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Navarro-Sanchez, V.D.; Lopez-Sanchez, J.M.; Ferro-Famil, L. Polarimetric Approaches for Persistent Scatterers Interferometry. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1667–1676. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Zoej, M.J.V.; Hooper, A.; Lopez-Sanchez, J.M. A new polarimetric persistent scatterer interferometry method using temporal coherence optimization. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6547–6555. [Google Scholar]
- Sadeghi, Z.; Zoej, M.J.V.; Muller, J.P. Monitoring land subsidence in a rural area using a combination of ADInSAR and polarimetric coherence optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3582–3590. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Zoej, M.J.V.; Muller, J.P. Combination of persistent scatterer interferometry and single-baseline polarimetric coherence optimisation to estimate deformation rates with application to tehran basin. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 327–340. [Google Scholar] [CrossRef]
- Shen, P.; Wang, C.; Hu, J. A Polarization Stacking Method for Optimizing Time-Series Interferometric Phases of Distributed Scatterers. Remote Sens. 2022, 14, 4168. [Google Scholar] [CrossRef]
- Shen, P.; Wang, C.; Lu, L.; Luo, X.; Hu, J.; Fu, H.; Zhu, J. A Novel Polarimetric PSI Method Using Trace Moment-Based Statistical Properties and Total Power Interferogram Construction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402815. [Google Scholar] [CrossRef]
- Azadnejad, S.; Maghsoudi, Y.; Perissin, D. Investigating the effect of the physical scattering mechanism of the dual-polarization sentinel-1 data on the temporal coherence optimization results. Int. J. Remote Sens. 2019, 40, 7033–7047. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Y.; Hu, J.; Yao, T.; Tan, Y.; Qin, Z.; Wang, C.; Yin, W. Landslide Identification in the Yuanjiang Basin of Northwestern Hunan, China, Using Multi-Temporal Polarimetric InSAR with Comparison to Single-Polarization Results. Remote Sens. 2025, 17, 1525. [Google Scholar] [CrossRef]
- Iglesias, R.; Monells, D.; Fabregas, X.; Mallorqui, J.J.; Aguasca, A.; Lopez-Martinez, C. Phase Quality Optimization in Polarimetric Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2875–2888. [Google Scholar] [CrossRef]
- Luo, J.; Lopez-Sanchez, J.M.; De Zan, F.; Mallorqui, J.J.; Tomas, R. Assessment of the Contribution of Polarimetric Persistent Scatterer Interferometry on Sentinel-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7997–8009. [Google Scholar] [CrossRef]
- Novak, L.M.; Burl, M.C. Optimal speckle reduction in polarimetric SAR imagery. In Proceedings of the Twenty-Second Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 1988; IEEE: Piscataway, NJ, USA, 1988; Volume 2, pp. 781–793. [Google Scholar]
- BOERNER, W.M. Introduction to radar polarimetry–with assessments of the historical development and of the current state-of-the-art. Electromagn. Wave Interact. 1996, 139–214. [Google Scholar]
- Kostinski, A.; Boerner, W. On foundations of radar polarimetry. IEEE Trans. Antennas Propag. 2003, 34, 1395–1404. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Jiang, M.; Miao, Z.; Gamba, P.; Yong, B. Application of Multitemporal InSAR Covariance and Information Fusion to Robust Road Extraction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3611–3622. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; De Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, X.; Wang, M.; Liu, X.; Wang, Q.; Li, R. A phase-decomposition-based polarimetric coherence optimization method. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Gao, S.; Li, Y. Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data. Sensors 2025, 25, 5968. https://doi.org/10.3390/s25195968
Ju X, Gao S, Li Y. Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data. Sensors. 2025; 25(19):5968. https://doi.org/10.3390/s25195968
Chicago/Turabian StyleJu, Xingjun, Sihua Gao, and Yongfeng Li. 2025. "Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data" Sensors 25, no. 19: 5968. https://doi.org/10.3390/s25195968
APA StyleJu, X., Gao, S., & Li, Y. (2025). Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data. Sensors, 25(19), 5968. https://doi.org/10.3390/s25195968