Multi-Task NoisyViT for Enhanced Fruit and Vegetable Freshness Detection and Type Classification
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Fresh and Stale Images of Fruits and Vegetables Dataset
2.1.2. Fruits and Vegetables Dataset
2.1.3. Fresh and Rotten Fruits Dataset for Machine-Based Evaluation of Fruit Quality
2.1.4. FruitNet
2.1.5. FruitQ
2.1.6. Freshness44 Dataset
2.2. Data Preprocessing and Augmentation
2.3. Multi-Task Noisy Vision Transformer (NoisyViT) Framework
2.4. Performance Metrics and Evaluation Protocol
3. Results
3.1. Fresh and Stale Images of Fruits and Vegetables Dataset
3.2. Fruits and Vegetables Dataset
3.3. Fresh and Rotten Fruits Dataset for Machine-Based Evaluation of Fruit Quality
3.4. FruitNet
3.5. FruitQ
3.6. Freshness44
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ViT | Vision Transformer |
CNN | Convolutional Neural Network |
ML | Machine Learning |
LSTM | Long Short-Term Memory |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
GAN | Generative Adversarial Network |
References
- Yuan, Y.; Chen, J.; Polat, K.; Alhudhaif, A. An Innovative Approach to Detecting the Freshness of Fruits and Vegetables through the Integration of Convolutional Neural Networks and Bidirectional Long Short-Term Memory Network. Curr. Res. Food Sci. 2024, 8, 100723. [Google Scholar] [CrossRef]
- Abayomi-Alli, O.O.; Damaševičius, R.; Misra, S.; Abayomi-Alli, A. FruitQ: A New Dataset of Multiple Fruit Images for Freshness Evaluation. Multimed. Tools Appl. 2024, 83, 11433–11460. [Google Scholar] [CrossRef]
- Hayat, A.; Morgado-Dias, F.; Choudhury, T.; Singh, T.P.; Kotecha, K. FruitVision: A Deep Learning Based Automatic Fruit Grading System. Open Agric. 2024, 9, 20220276. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Tzani, M.; Aznaouridis, S.I. A General Machine Learning Model for Assessing Fruit Quality Using Deep Image Features. AI 2023, 4, 812–830. [Google Scholar] [CrossRef]
- Sjöstrand, J.; Tahir, I.; Persson Hovmalm, H.; Garkava-Gustavsson, L.; Stridh, H.; Olsson, M.E. Comparison between IAD and Other Maturity Indices in Nine Commercially Grown Apple Cultivars. Sci. Hortic. 2024, 324, 112559. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Cheng, Y.; Wu, X.; Sun, X.; Hou, R.; Wang, H. Fruit Freshness Detection Based on Multi-Task Convolutional Neural Network. Curr. Res. Food Sci. 2024, 8, 100733. [Google Scholar] [CrossRef]
- Lu, Y.; Harvey, L.; Shankle, M. Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines. AgriEngineering 2023, 5, 941–949. [Google Scholar] [CrossRef]
- Zhang, Z.; Pothula, A.K.; Lu, R. Economic Evaluation of Apple Harvest and In-Field Sorting Technology. Trans. ASABE 2017, 60, 1537–1550. [Google Scholar] [CrossRef]
- Mizushima, A.; Lu, R. Cost Benefits Analysis of In-Field Presorting for the Apple Industry. Appl. Eng. Agric. 2011, 27, 33–40. [Google Scholar] [CrossRef]
- Rojas Santelices, I.; Cano, S.; Moreira, F.; Peña Fritz, Á. Artificial Vision Systems for Fruit Inspection and Classification: Systematic Literature Review. Sensors 2025, 25, 1524. [Google Scholar] [CrossRef]
- Dong, Y.; Qiao, J.; Liu, N.; He, Y.; Li, S.; Hu, X.; Yu, C.; Zhang, C. GPC-YOLO: An Improved Lightweight YOLOv8n Network for the Detection of Tomato Maturity in Unstructured Natural Environments. Sensors 2025, 25, 1502. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, Y.; Yin, M.; Li, H. Automatic Apple Detection and Counting with AD-YOLO and MR-SORT. Sensors 2024, 24, 7012. [Google Scholar] [CrossRef] [PubMed]
- Neupane, C.; Walsh, K.B.; Goulart, R.; Koirala, A. Developing Machine Vision in Tree-Fruit Applications—Fruit Count, Fruit Size and Branch Avoidance in Automated Harvesting. Sensors 2024, 24, 5593. [Google Scholar] [CrossRef]
- Hu, J.; Fan, C.; Wang, Z.; Ruan, J.; Wu, S. Fruit Detection and Counting in Apple Orchards Based on Improved Yolov7 and Multi-Object Tracking Methods. Sensors 2023, 23, 5903. [Google Scholar] [CrossRef]
- Rathnayake, N.; Rathnayake, U.; Dang, T.L.; Hoshino, Y. An Efficient Automatic Fruit-360 Image Identification and Recognition Using a Novel Modified Cascaded-ANFIS Algorithm. Sensors 2022, 22, 4401. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, L.; Hu, X.; Yang, F.; Huang, Y. A Dynamic Kalman Filtering Method for Multi-Object Fruit Tracking and Counting in Complex Orchards. Sensors 2025, 25, 4138. [Google Scholar] [CrossRef]
- Doulah, A.; Ghosh, T.; Hossain, D.; Imtiaz, M.H.; Sazonov, E. “Automatic Ingestion Monitor Version 2”—A Novel Wearable Device for Automatic Food Intake Detection and Passive Capture of Food Images. IEEE J. Biomed. Health Inform. 2021, 25, 568–576. [Google Scholar] [CrossRef]
- Farooq, M.; Sazonov, E. Feature Extraction Using Deep Learning for Food Type Recognition. In Bioinformatics and Biomedical Engineering; Rojas, I., Ortuño, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 464–472. [Google Scholar]
- Ghosh, T.; Han, Y.; Raju, V.; Hossain, D.; McCrory, M.A.; Higgins, J.; Boushey, C.; Delp, E.J.; Sazonov, E. Integrated Image and Sensor-Based Food Intake Detection in Free-Living. Sci. Rep. 2024, 14, 1665. [Google Scholar] [CrossRef]
- Hossain, D.; Imtiaz, M.H.; Ghosh, T.; Bhaskar, V.; Sazonov, E. Real-Time Food Intake Monitoring Using Wearable Egocnetric Camera. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 4191–4195. [Google Scholar]
- Fard, S.E.; Ghosh, T.; Hossain, D.; McCrory, M.A.; Thomas, G.; Higgins, J.; Jia, W.; Baranowski, T.; Steiner-Asiedu, M.; Anderson, A.K.; et al. Development of a Method for Compliance Detection in Wearable Sensors. In Proceedings of the 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16–17 November 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Mohammadagha, M.; Naeini, H.K.; Asadi, S.; Najafi, D.M.; Kaushal, D.V. Machine Learning Model for Condition Assessment of Trenchless Vitrified Clay Pipes. Available online: https://hal.science/hal-05019707/ (accessed on 4 March 2025).
- Karakaya, D.; Ulucan, O.; Turkan, M. A Comparative Analysis on Fruit Freshness Classification. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Şengöz, N.; Köroğlu, H.; Kırıktaş, B.N. Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 2025, 29, 124–133. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Zoha, A.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Machine Learning Driven Approach Towards the Quality Assessment of Fresh Fruits Using Non-Invasive Sensing. IEEE Sens. J. 2020, 20, 2075–2083. [Google Scholar] [CrossRef]
- Rohit Mamidi, S.S.; Akhil Munaganuri, C.; Gollapalli, T.; Aditya, A.T.V.S.; B, R.C. Implementation of Machine Learning Algorithms to Identify Freshness of Fruits. In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; IEEE: New York, NY, USA, 2022; pp. 1395–1399. [Google Scholar]
- Huang, W.; Wang, X.; Zhang, J.; Xia, J.; Zhang, X. Improvement of Blueberry Freshness Prediction Based on Machine Learning and Multi-Source Sensing in the Cold Chain Logistics. Food Control 2023, 145, 109496. [Google Scholar] [CrossRef]
- Nikookar, S.; Namazi Nia, S.; Basu Roy, S.; Amer-Yahia, S.; Omidvar-Tehrani, B. Model Reusability in Reinforcement Learning. VLDB J. 2025, 34, 41. [Google Scholar] [CrossRef]
- Williams, E.; Polydoros, A. Zero-Shot Sim-to-Real Reinforcement Learning for Fruit Harvesting. arXiv 2025, arXiv:2505.08458. [Google Scholar]
- Ziad, E.; Yang, Z.; Lu, Y.; Ju, F. Knowledge Constrained Deep Clustering for Melt Pool Anomaly Detection in Laser Powder Bed Fusion. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024; IEEE: New York, NY, USA, 2024; pp. 670–675. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2024; pp. 779–788. [Google Scholar]
- Kang, H.; Wang, X. Semantic Segmentation of Fruits on Multi-Sensor Fused Data in Natural Orchards. Comput. Electron. Agric. 2023, 204, 107569. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Vasheghani, S.; Sharifi, S. Dynamic Ensemble Learning for Robust Image Classification: A Model- Specific Selection Strategy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5215134 (accessed on 12 April 2025).
- Rezvani Boroujeni, S.; Abedi, H.; Bush, T. Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control. COMDEM 2025, 2, 687–707. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Hasanpour, M.; Zolghadri, M.; Salimi, F.; Yektaeian Vaziri, A.; Mahmoudi Aqeel Abadi, A.; Jafari, R.; Esfahanian, P.; Nazem-Zadeh, M.-R. Deep Learning Framework for Prediction of Infection Severity of COVID-19. Front. Med. 2022, 9, 940960. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Wang, Y.; Xiong, J.; Zhang, Z.; Zhao, B.; Luo, L.; Lin, G.; He, P. Application of Convolutional Neural Network-Based Detection Methods in Fresh Fruit Production: A Comprehensive Review. Front. Plant Sci. 2022, 13, 868745. [Google Scholar] [CrossRef]
- Sultana, S.; Moon Tasir, M.A.; Nuruzzaman Nobel, S.M.; Kabir, M.M.; Mridha, M.F. XAI-FruitNet: An Explainable Deep Model for Accurate Fruit Classification. J. Agric. Food Res. 2024, 18, 101474. [Google Scholar] [CrossRef]
- Amin, U.; Shahzad, M.I.; Shahzad, A.; Shahzad, M.; Khan, U.; Mahmood, Z. Automatic Fruits Freshness Classification Using CNN and Transfer Learning. Appl. Sci. 2023, 13, 8087. [Google Scholar] [CrossRef]
- Morshed, M.S.; Ahmed, S.; Ahmed, T.; Islam, M.U.; Ashikur Rahman, A.B.M. Fruit Quality Assessment with Densely Connected Convolutional Neural Network. In Proceedings of the 2022 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 21–23 December 2022; IEEE: New York, NY, USA, 2024; pp. 1–4. [Google Scholar]
- Yuan, Y.; Chen, X. Vegetable and Fruit Freshness Detection Based on Deep Features and Principal Component Analysis. Curr. Res. Food Sci. 2024, 8, 100656. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Poor, F.F.; Dodge, H.H.; Mahoor, M.H. A Multimodal Cross-Transformer-Based Model to Predict Mild Cognitive Impairment Using Speech, Language and Vision. Comput. Biol. Med. 2024, 182, 109199. [Google Scholar] [CrossRef]
- Irani, H.; Metsis, V. Positional Encoding in Transformer-Based Time Series Models: A Survey. arXiv 2025, arXiv:2502.12370. [Google Scholar]
- Ahmadi, H.; Mahdimahalleh, S.E.; Farahat, A.; Saffari, B. Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications. J. Intell. Learn. Syst. Appl. 2025, 17, 77–111. [Google Scholar] [CrossRef]
- Kermani, A.; Zeraatkar, E.; Irani, H. Energy-Efficient Transformer Inference: Optimization Strategies for Time Series Classification. arXiv 2025, arXiv:2502.16627. [Google Scholar] [CrossRef]
- Mahjourian, N.; Nguyen, V. Sanitizing Manufacturing Dataset Labels Using Vision-Language Models. arXiv 2025, arXiv:2506.23465. [Google Scholar] [CrossRef]
- Khaniki, M.A.L.; Mirzaeibonehkhater, M.; Fard, S.E. Class Imbalance-Aware Active Learning with Vision Transformers in Federated Histopathological Imaging. J. Med. Med. Stud. 2025, 2, 141–150. [Google Scholar]
- Adami, B.; Karimian, N. rPPG-SysDiaGAN: Systolic-Diastolic Feature Localization in rPPG Using Generative Adversarial Network with Multi-Domain Discriminator. arXiv 2025, arXiv:2504.01220. [Google Scholar]
- N. A., D. Deep Learning and Computer Vision Approach—A Vision Transformer Based Classification of Fruits and Vegetable Diseases (DLCVA-FVDC). Multimed. Tools Appl. 2024, 83, 80459–80495. [Google Scholar] [CrossRef]
- Xiao, B.; Nguyen, M.; Yan, W.Q. Fruit Ripeness Identification Using Transformers. Appl. Intell. 2023, 53, 22488–22499. [Google Scholar] [CrossRef]
- Maraveas, C.; Kalitsios, G.; Kotzabasaki, M.I.; Giannopoulos, D.V.; Dimitropoulos, K.; Vatsanidou, A. Real-Time Freshness Prediction for Apples and Lettuces Using Imaging Recognition and Advanced Algorithms in a User-Friendly Mobile Application. Smart Agric. Technol. 2025, 12, 101129. [Google Scholar] [CrossRef]
- Sar, A.; Choudhury, T.; Sarkar, T.; Kotecha, K. Papayafreshnet: A Hybrid Deep Learning Framework for Non-Destructive Freshness Classification of Papayas Using Convolutional and Transformer Networks. Discov. Food 2025, 5, 97. [Google Scholar] [CrossRef]
- Tang, J.; Yu, Z.; Shao, C. Hybrid Attention Transformer Integrated YOLOV8 for Fruit Ripeness Detection. Sci. Rep. 2025, 15, 22652. [Google Scholar] [CrossRef]
- Mukhiddinov, M.; Muminov, A.; Cho, J. Improved Classification Approach for Fruits and Vegetables Freshness Based on Deep Learning. Sensors 2022, 22, 8192. [Google Scholar] [CrossRef]
- Sultana, N.; Jahan, M.; Uddin, M.S. An Extensive Dataset for Successful Recognition of Fresh and Rotten Fruits. Data Brief 2022, 44, 108552. [Google Scholar] [CrossRef]
- Meshram, V.; Patil, K. FruitNet: Indian Fruits Image Dataset with Quality for Machine Learning Applications. Data Brief 2022, 40, 107686. [Google Scholar] [CrossRef]
- Georgiadis, P.; Gkouvrikos, E.V.; Vrochidou, E.; Kalampokas, T.; Papakostas, G.A. Building Better Deep Learning Models Through Dataset Fusion: A Case Study in Skin Cancer Classification with Hyperdatasets. Diagnostics 2025, 15, 352. [Google Scholar] [CrossRef]
- Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical Automated Data Augmentation with a Reduced Search Space. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: New York, NY, USA, 2024; pp. 3008–3017. [Google Scholar]
- Ghosh, T.; Sazonov, E. Improving Food Image Recognition with Noisy Vision Transformer. arXiv 2025, arXiv:2503.18997. [Google Scholar] [CrossRef]
- Yu, X.; Huang, Z.; Chen, M.; Xue, Y.; Liu, T.; Zhu, D. NoisyNN: Exploring the Impact of Information Entropy Change in Learning Systems. arXiv 2024, arXiv:2309.10625. [Google Scholar]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [Google Scholar] [CrossRef]
Dataset | Number of Categories (Fruit/Vegetable) | Number of Images | Image Resolution |
---|---|---|---|
Fresh and Stale Images of Fruits and Vegetables | 6 | 14,682 | Mixed from 144 × 122 to 862 × 386 |
Fruits and Vegetables | 10 | 12,000 | Mixed from 80 × 100 to 6183 × 4126 |
Fresh and Rotten Fruits | 8 | 3200 with 12,335 Augmented Images | Mixed from 251 × 577 to 4160 × 3120 |
FruitNet | 6 | 19,526 | Mixed from 144 × 256 to 8000 × 6000 |
FruitQ | 11 | 9421 | Mix of 400 × 400 and 1280 × 720 |
Fruit/Vegetable Type | Freshness | Number of Images | Fruit/Vegetable Type | Freshness | Number of Images |
---|---|---|---|---|---|
Apple | Fresh | 3468 | Lime | Fresh | 1094 |
Rotten | 4263 | Rotten | 1085 | ||
Banana | Fresh | 3513 | Mango | Fresh | 389 |
Rotten | 3605 | Rotten | 593 | ||
Bell Pepper | Fresh | 1634 | Orange | Fresh | 3164 |
Rotten | 2108 | Rotten | 3443 | ||
Bitter Gourd | Fresh | 327 | Papaya | Fresh | 130 |
Rotten | 357 | Rotten | 413 | ||
Carrot | Fresh | 605 | Peach | Fresh | 425 |
Rotten | 507 | Rotten | 584 | ||
Cucumber | Fresh | 833 | Pear | Fresh | 504 |
Rotten | 692 | Rotten | 100 | ||
Grape | Fresh | 227 | Pomegranate | Fresh | 6140 |
Rotten | 288 | Rotten | 1387 | ||
Grapes | Fresh | 200 | Potato | Fresh | 602 |
Rotten | 200 | Rotten | 562 | ||
Guava | Fresh | 1352 | Strawberry | Fresh | 803 |
Rotten | 1329 | Rotten | 795 | ||
Jujube | Fresh | 200 | Tomato | Fresh | 1905 |
Rotten | 200 | Rotten | 2504 | ||
Kaki | Fresh | 545 | Watermelon | Fresh | 51 |
Rotten | 340 | Rotten | 150 |
Dataset | Model | Accuracy |
---|---|---|
Fresh and Stale Images of Fruits and Vegetables Dataset | VGG 16 [1] | 82.2% |
GoogLeNet [1] | 94.62% | |
CNN_BiLSTM [1] | 97.76% | |
Proposed Custom CNN model in [50] | 97.65% | |
Proposed ViT model in [50] | 98.34% | |
NoisyViT (224 × 224) | 99.85% | |
Fruits and Vegetables Dataset | Combined Deep Features and PCA [41] | 96.98% |
Customized CNN model [39] | 98.20% | |
NoisyViT (224 × 224) | 99.01% | |
Fresh and Rotten Fruits Dataset for Machine-Based Evaluation of Fruit Quality | XGBoost [24] | 93.33% |
Multi-Task CNN [6] | 93.24% | |
NoisyViT (224 × 224) | 98.96% | |
FruitNet | ResNEt 152 [40] | 97.86% |
VGG 16 [40] | 98.6% | |
Xception [40] | 98.98% | |
DenseNet201 [40] | 99.26% | |
XAI-FruitNet [38] | 97.01% | |
NoisyViT (224 × 224) | 99.77% | |
FruitQ | NoisyViT (224 × 224) | 97.98% |
Model | Image Resolution | Accuracy | Freshness Accuracy | Type Accuracy |
---|---|---|---|---|
Ordinary ViT | 224 × 224 | 99.32% | - | - |
Noisy ViT | 224 × 224 | 99.59% | - | - |
Noisy ViT | 384 × 384 | 99.75% | - | - |
Multi-Task Noisy ViT | 224 × 224 | 99.73% | 99.60% | 99.86% |
Multi-Task Noisy ViT | 384 × 384 | 99.75% | 99.65% | 99.84% |
Class | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 1545 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
02 | 0 | 1424 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
03 | 0 | 1 | 746 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
04 | 0 | 0 | 0 | 138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
05 | 0 | 0 | 0 | 0 | 223 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
06 | 0 | 0 | 0 | 0 | 0 | 305 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
07 | 0 | 0 | 0 | 0 | 0 | 0 | 104 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
09 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 537 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 177 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 436 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 193 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1320 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 202 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 121 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1506 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 231 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 320 | 0 | 0 |
21 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 880 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41 |
Class | Fresh | Rotten |
---|---|---|
Fresh | 5611 | 17 |
Rotten | 26 | 5082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esfandiari Fard, S.; Ghosh, T.; Sazonov, E. Multi-Task NoisyViT for Enhanced Fruit and Vegetable Freshness Detection and Type Classification. Sensors 2025, 25, 5955. https://doi.org/10.3390/s25195955
Esfandiari Fard S, Ghosh T, Sazonov E. Multi-Task NoisyViT for Enhanced Fruit and Vegetable Freshness Detection and Type Classification. Sensors. 2025; 25(19):5955. https://doi.org/10.3390/s25195955
Chicago/Turabian StyleEsfandiari Fard, Siavash, Tonmoy Ghosh, and Edward Sazonov. 2025. "Multi-Task NoisyViT for Enhanced Fruit and Vegetable Freshness Detection and Type Classification" Sensors 25, no. 19: 5955. https://doi.org/10.3390/s25195955
APA StyleEsfandiari Fard, S., Ghosh, T., & Sazonov, E. (2025). Multi-Task NoisyViT for Enhanced Fruit and Vegetable Freshness Detection and Type Classification. Sensors, 25(19), 5955. https://doi.org/10.3390/s25195955