Optically Controlled Bias-Free Frequency Reconfigurable Antenna
Abstract
1. Introduction
2. Antenna Design, Reconfiguration Mechanism, and Parametric Analysis
2.1. Antenna Structure and Reconfigurable Operation
2.2. LDR Integration and Electrical Switching
3. Simulated and Measured Results
4. Comparison
| Ref. | Reconfiguration Method (No of Devices) | RF-Board DC Bias Lines? | Control Drive (typ.) | RF-Board Quiescent Power * | Switching Speed | Layout Intrusion | Resonant Frequency | Relative BW (%) | Max Gain (dBi) | No. of Switch States | Dimensions (λl) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| [39] | VO2 | Yes | Thermal/drive current | mW–100 s mW | ms–s | High | 4.12–7.1 | 5/3 | 1.73 | 2 | 0.28 × 0.09 × 0.007 |
| [33] | PIN diodes (4) | Yes | ~10 mA forward | mW per element | ns–µs | High | 2.45–3.5 | 12/6.5 | 6.8 | 2 | 0.8 × 0.8 × 0.02 |
| [34] | PIN diodes (4) | Yes | ~mA forward | mW | ns–µs | High | 3.5–5.5 | 33.7/19.8 | 4.2 | 2 | 0.583 × 0.583 × 0.018 |
| [35] | PIN diodes (2) | Yes | ~mA forward | mW | ns–µs | Med–High | 3.16, 5.6–13.7 | 104.5/20.8 | 3.8 | 2 | 0.21 × 0.31 × 0.017 |
| [36] | PIN diodes (12) | Yes | ~mA forward | mW | ns–µs | High | 2.4–5.8 | 0.7/1.7 | 6.7 | 2 | 0.42 × 0.42 × 0.01 |
| [37] | AMC + PIN diodes (4) | Yes | ~mA forward | mW | ns–µs | High | 3.5–4.6 | 27.1/25 | 8.14 | 2 | 0.78 × 0.78 × 0.1 |
| [38] | Varactor (1) | Yes | 2–20 V reverse | ~0 (device) + driver | ns–µs | Med | 4.13–4.50 | 1.5/2.2 | 4 | 2 | 0.29 × 0.29 × 0.02 |
| [40] | Liquid dielectrics | Often No † | Pumps/valves | System-dependent | ms–s | High | 1.29–2.51 | 13.94/13.9 | 4.7 | 2 | 0.19 × 0.33 × 0.003 |
| [41] | PIN diode (1) | Yes | ~mA forward | mW | ns–µs | Med | 6.8–15.5 | NA | 3.8 | 2 | 0.68 × 0.363 × 0.008 |
| This work | LDR (1) | No | Optical illumination | 0 (on RF board) | ms | Low | OFF state | 5.3 | 2 | 0.254 × 0.19 × 0.0073 | |
| (2.45/ 3.8/ 5.8) | 38.0/13.3/31.8) | ||||||||||
| ON state | |||||||||||
| (1.7/ 3.8/ 5.8) | (53.3/24.1/20.9 | ||||||||||
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Liu, F.; Ruan, X.; Liu, Y. A Dual-Band Multi-Linear Polarization Reconfigurable Antenna for Body-Centric Wireless Communication Systems. Sensors 2025, 25, 3630. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ma, X.; Yang, J.; Li, Y.; Peng, M.; Zheng, Q. Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing. Sensors 2025, 25, 1498. [Google Scholar] [CrossRef]
- Le-Tuan, T.; Nguyen, T.D.; Tran, N.V.; Tran, H.; Nguyen-Tien, D. Circularly Polarized Reconfigurable MIMO Antenna for WLAN Applications. Sensors 2025, 25, 1257. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Lu, C.; Xiang, Y.; Li, F.; Song, M. Comprehensive Review of RF MEMS Switches in Satellite Communications. Sensors 2024, 24, 3135. [Google Scholar] [CrossRef] [PubMed]
- Subbaraj, S.; Thomas, S.B. Reconfigurable Antennas and Their Practical Applications—A Review. Radio Sci. 2023, 58, e2023RS007656. [Google Scholar] [CrossRef]
- Kumar, A.; Aljaidi, M.; Kansal, I.; Alshammari, K.; Gupta, G.; Alenezi, S.M. Recent Trends in Reconfigurable Antennas for Modern Wireless Communication: A Comprehensive Review. Int. J. Antennas Propag. 2024, 2024, 8816812. [Google Scholar] [CrossRef]
- Guo, Y.J.; Guo, C.A.; Li, M.; Latva-aho, M. Antenna Technologies for 6G—Advances and Challenges. IEEE Trans. Antennas Propag. Early Access 2025, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, Y.; Wong, S.W.; Khan, A.; Song, C.; He, Y. Circularly/Linearly Polarized and Pattern Reconfigurable MIMO Millimeter-Wave antenna. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 2969–2973. [Google Scholar] [CrossRef]
- Suryapaga, V.; Khairnar, V.V. Review on Multifunctional Pattern and Polarization Reconfigurable Antennas. IEEE Access 2024, 12, 90218–90251. [Google Scholar] [CrossRef]
- Ramahatla, K.; Mosalaosi, M.; Yahya, A.; Basutli, B. Multiband Reconfigurable Antennas for 5G Wireless and CubeSat Applications: A Review. IEEE Access 2022, 10, 40910–40931. [Google Scholar] [CrossRef]
- Varadan, V.K.; Vinoy, K.J.; Jose, K.A. RF MEMS and Their Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Jin, X.; Zhou, Y.; Lou, J.; Liu, H.; Liu, S.; Liu, S. A Simple Compact Cross-Band Reconfigurable Microstrip Patch Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 2894–2898. [Google Scholar] [CrossRef]
- Cho, Y.; Sung, Y. 3-D Beam Steering 2 × 2 Array Antenna With Tunable Frequency Based on the Phase Difference between Patches. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 3223–3227. [Google Scholar] [CrossRef]
- Bondarik, A.; Sjöberg, D. Bias network and diode parasitics of a reconfigurable stacked microstrip patch antenna at 60 GHz. In Proceedings of the 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cairns, Australia, 19–23 September 2016; pp. 290–293. [Google Scholar] [CrossRef]
- Skyworks. SMP1330 Series: Plastic Packaged Limiter Diodes. In Rev. 200050N; Skyworks Solutions, Inc.: Irvine, CA, USA, 2016; Available online: https://www.skyworksinc.com/-/media/skyworks/documents/products/101-200/smp1330_series_200050n.pdf (accessed on 15 August 2025).
- Duracell. CR2032 Lithium/Manganese Dioxide Battery—Technical Datasheet. In Rev. CR2032L2r_CSRF_R2-A.; Duracell: Bethel, CT, USA, 2022; Available online: https://www.cr2032.co/cms/prodimages/duracell_cr2032_datasheet.pdf (accessed on 15 August 2025).
- Häger, S.; Kaudewitz, M.; Schmickmann, F.; Böcker, S.; Wietfeld, C. Field Performance Evaluation of a Mechatronic Reflector System in a Private mmWave Network Environment. IEEE Open J. Commun. Soc. 2025, 6, 5005–5029. [Google Scholar] [CrossRef]
- Baena-Molina, M.; Palomares-Caballero, Á.; Martínez-García, G.; Galeote-Cazorla, J.E.; Ramírez-Arroyo, A.; Valenzuela-Valdés, J.F. 1-bit Mechanically Reconfigurable Metasurface as a Beam Splitter for Indoor Environments at 28 GHz. IEEE Antennas Wirel. Propag. Lett. Early Access 2025, 1–5. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Torres, D.; Teeslink, T.S.; Sepulveda, N. Vanadium Dioxide for Reconfigurable Antennas and Microwave Devices: Enabling RF Reconfigurability Through Smart Materials. IEEE Antennas Propag. Mag. 2020, 62, 58–73. [Google Scholar] [CrossRef]
- Wang, C.; Yeo, J.C.; Chu, H.; Lim, C.T.; Guo, Y.X. Design of a Reconfigurable Patch Antenna Using the Movement of Liquid Metal. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 974–977. [Google Scholar] [CrossRef]
- Ahmad, K.S.; Al-Gburi, A.J.A. Graphene-based frequency reconfigurable slot antenna for terahertz applications. Optik 2025, 330, 172343. [Google Scholar] [CrossRef]
- Li, J.; Wu, B.; Zhou, J.; Ning, J.; Sun, Q.; Liu, Y. Graphene-Based Current-Vector Control Method and Its Application to Continuous Polarization Reconfigurable Antennas. IEEE Trans. Antennas Propag. 2025, 73, 2895–2907. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Abbosh, A. Reconfigurable water-substrate based antennas with temperature control. Appl. Phys. Lett. 2017, 110, 253503. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Liu, R.; Dong, J. Switchable THz Bi-Functional Device for Absorption and Dual-Band Linear-to-Circular Polarization Conversion Based on Vanadium Dioxide–Graphene. Sensors 2025, 25, 3644. [Google Scholar] [CrossRef]
- Alnajjar, M.B.; Sayidmarie, K.H. Analysis of Reconfigurable Frequency Selective Surface FSS Using Light-Dependent Resistor LDR. In Proceedings of the 10th International Congress on Information and Communication Technology, Amman, Jordan, 18–21 February 2025. [Google Scholar]
- Saha, S.; Begam, N.; Chatterjee, A.; Biswas, S.; Sarkar, P.P. Reconfigurable frequency selective surface with tunable characteristics depending on intensity of atmospheric light. IET Microw. Antennas Propag. 2019, 13, 2336–2341. [Google Scholar] [CrossRef]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yahya, L.S.; Sayidmarie, K.H.; Elmegri, F.; Abd-Alhameed, R.A. Crescent-shaped double-monopole antennas with reduced coupling for WLAN and WIMAX applications. In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 393–398. [Google Scholar] [CrossRef]
- Photonix, A. NSL-6112 Light Dependent Resistor (LDR) Datasheet. 2010. Available online: https://www.advancedphotonix.com/wp-content/uploads/NSL-6112.pdf (accessed on 15 August 2025).
- Optoelectronics, P. Photoconductive Cells and Analog Optoisolators (Vactrols®). 2001. Available online: https://arduino.benarent.co.uk/datasheet/BRO_PhotoconductiveCellsAndAnalogOptoiso.pdf (accessed on 15 August 2025).
- Clairex Electronics. Photoconductive Cell Application Design Handbook; Clairex Electronics: Mount Vernon, NY, USA, 1971; Available online: https://proaudiodesignforum.com/images/pdf/Photoconductive_Cell_Application_Design_Handbook_Clairex.pdf (accessed on 15 August 2025).
- Jin, G.; Deng, C.; Yang, J.; Xu, Y.; Liao, S. A New Differentially-Fed Frequency Reconfigurable Antenna for WLAN and Sub-6GHz 5G Applications. IEEE Access 2019, 7, 56539–56546. [Google Scholar] [CrossRef]
- Jin, G.; Deng, C.; Xu, Y.; Yang, J.; Liao, S. Differential Frequency-Reconfigurable Antenna Based on Dipoles for Sub-6 GHz 5G and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 472–476. [Google Scholar] [CrossRef]
- Keskin, S.E.B.; Koziel, S.; Szczepanski, S. Frequency reconfigurable PIN diode-based Reuleaux-triangle-shaped monopole antenna for UWB/Ku band applications. Sci. Rep. 2025, 15, 6555. [Google Scholar] [CrossRef]
- Qin, J.; Fu, X.; Sun, M.; Ren, Q.; Chen, A. Frequency Reconfigurable Antenna Based on Substrate Integrated Waveguide for S-Band and C-Band Applications. IEEE Access 2021, 9, 2839–2845. [Google Scholar] [CrossRef]
- Nie, Z.; Zhai, H.; Liu, L.; Li, J.; Hu, D.; Shi, J. A Dual-Polarized Frequency-Reconfigurable Low-Profile Antenna With Harmonic Suppression for 5G Application. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1228–1232. [Google Scholar] [CrossRef]
- Somarith, S.; Hyunseong, K.; Sungjoon, L. Frequency Reconfigurable and Miniaturized Substrate Integrated Waveguide Interdigital Capacitor (SIW-IDC) Antenna. IEEE Trans. Antennas Propag. 2014, 62, 1039–1045. [Google Scholar] [CrossRef]
- Aljonubi, K.; AlAmoudi, A.O.; Langley, R.J.; Reaney, I. Reconfigurable antenna using smart material. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 917–918. [Google Scholar]
- Srivastava, G.; Kumar, A.; Mohan, A.; Kanaujia, B.K.; Matekovits, L.; Peter, I. An Eight-Port Frequency Reconfigurable MIMO Antenna using Liquid Dielectrics. IEEE Access 2025, 13, 142938–142947. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Yang, Y.; Zhou, Y. A Frequency-Reconfigurable Planar Slot Antenna Using S-PIN Diode. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1007–1011. [Google Scholar] [CrossRef]






| Technique | RF-Board and DC Bias Lines | Typical Control/ Drive | Switching Speed | Layout Impact (Compact) |
|---|---|---|---|---|
| PIN diode | Yes (RF chokes, capacitors) | 0.8–1.5 V | ns–µs | High |
| Varactor | Yes (RF chokes, capacitors) | Up to ~20 V (reverse), leakage nA–µA | ns–µs | Moderate |
| RF-MEMS (electrostatic) | Yes (high voltage driver) | ~20–80 V actuation | µs–ms | Moderate–High |
| Mechanical actuation | Yes (stepper motors) | ~5 V | ms–s | Low–Moderate (bulk) |
| Smart materials (fluidic/graphene) | Often No (pumps/bias off-board) | Varies (pumps/heaters/bias) | µs–s (tech-dependent) | High (integration complexity) |
| Optical (photoconductive LDR) | No (no RF-board DC lines) | Optical illumination (intensity-controlled) | ms (device-dependent) | Low |
| Arc Segment | LDR State | Length L (mm) | Calculated (GHz) | Simulated (GHz) | |
|---|---|---|---|---|---|
| Resonance (GHz) | Band (GHz) | ||||
| Combined arcs | ON | 109.7 | Mode (1): 1.68 | 1.70 | 1.52–2.05 |
| Mode (2): 3.36 | 3.70 | 3.45–4.13 | |||
| Mode (3): 5.04 | 5.20 | 5.02 -> 7.00 | |||
| Short arc | OFF | 27.0 | 6.83 | 5.80 | 5.13–6.80 |
| Long arc | 76.3 | 2.42 | 2.45 | 2.14–2.80 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younus, K.M.; Sayidmarie, K.; Sultan, K.; Abbosh, A. Optically Controlled Bias-Free Frequency Reconfigurable Antenna. Sensors 2025, 25, 5951. https://doi.org/10.3390/s25195951
Younus KM, Sayidmarie K, Sultan K, Abbosh A. Optically Controlled Bias-Free Frequency Reconfigurable Antenna. Sensors. 2025; 25(19):5951. https://doi.org/10.3390/s25195951
Chicago/Turabian StyleYounus, Karam Mudhafar, Khalil Sayidmarie, Kamel Sultan, and Amin Abbosh. 2025. "Optically Controlled Bias-Free Frequency Reconfigurable Antenna" Sensors 25, no. 19: 5951. https://doi.org/10.3390/s25195951
APA StyleYounus, K. M., Sayidmarie, K., Sultan, K., & Abbosh, A. (2025). Optically Controlled Bias-Free Frequency Reconfigurable Antenna. Sensors, 25(19), 5951. https://doi.org/10.3390/s25195951

