Design of Low-Frequency Extended Signal Conditioning Circuit for Coal Mine Geophone
Abstract
1. Introduction
2. Principle and Model of the Geophone
2.1. Working Principle of the Geophone
2.2. Equivalent Electrical Model of the Geophone
3. Method and Design of Signal Conditioning Circuit
3.1. Analysis of the Principle of Extended Filtering Method
3.2. Comprehensive Design of Signal Conditioning Circuits
3.3. Simulation Verification of Signal Conditioning Circuits
4. Results and Analysis of Signal Conditioning Circuit
4.1. Hardware Implementation of Signal Conditioning Circuit
4.2. Test Results and Analysis of the Vibration Table
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Ma, N.; Ren, J.; Li, C. Peak particle velocity of vibration events in underground coal mine and their caused stress increment. Measurement 2021, 169, 108520. [Google Scholar] [CrossRef]
- Ning, J.; Wang, J.; Jiang, L.; Jiang, N.; Liu, X.; Jiang, J. Fracture analysis of double-layer hard and thick roof and the controlling effect on strata behavior: A case study. Eng. Fail. Anal. 2017, 81, 117–134. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, X.; Gu, Q.; Zhang, W.; Wang, W.; Fan, L. The Frequency Characteristics of Vibration Events in an Underground Coal Mine and Their Implications on Rock Burst Monitoring and Prevention. Sustainability 2024, 16, 5485. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, Y.; Li, T. Gravitational Search Algorithm for Microseismic Source Location in Tunneling: Performance Analysis and Engineering Case Study. Rock Mech. Rock Eng. 2019, 52, 3999–4016. [Google Scholar] [CrossRef]
- Si, G.; Cai, W.; Wang, S.; Li, X. Prediction of Relatively High-Energy Seismic Events Using Spatial—Temporal Parametrisation of Mining-Induced Seismicity. Rock Mech. Rock Eng. 2020, 53, 5111–5132. [Google Scholar] [CrossRef]
- Fan, L.; Liu, S. Evaluation of permeability damage for stressed coal with cyclic loading: An experimental study. Int. J. Coal Geol. 2019, 216, 103338. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Zhang, X.; Zhou, C.; Yin, X.; Xie, W.; Liang, X.; Huang, J. Attenuation characteristics of impact-induced seismic wave in deep tunnels: An in situ investigation based on pendulum impact test. J. Rock Mech. Geotech. Eng. 2022, 14, 494–504. [Google Scholar] [CrossRef]
- Banziger, R. Acoustic sensors (hydrophones) as indicators for bed load transport in a mountain torrent. IAHS Publ. 1990, 193, 207–214. [Google Scholar]
- Chen, J.; Zhu, C.; Du, J.; Pu, Y.; Pan, P.; Bai, J.; Qi, Q. A quantitative pre-warning for coal burst hazardous zones in a deep coal mine based on the spatio-temporal forecast of microseismic events. Process Saf. Environ. Prot. 2022, 159, 1105–1112. [Google Scholar] [CrossRef]
- Li, N.; Wang, E.; Ge, M. Microseismic monitoring technique and its applications at coal mines: Present status and future prospects. J. China Coal Soc. 2017, 42, 83–96. [Google Scholar]
- Han, Z.; Dou, L.; Mu, Z.; Cao, J.; Chai, Y.; Chen, S. Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines. Sensors 2023, 23, 8420. [Google Scholar] [CrossRef]
- Ringler, A.T.; Anthony, R.E.; Aster, R.C.; Ammon, C.J.; Arrowsmith, S.; Benz, H.; Ebeling, C.; Frassetto, A.; Kim, W.Y.; Koelemeijer, P.; et al. Achievements and prospects of global broadband seismographic networks after 30 years of continuous geophysical observations. J. Rev. Geophys. 2022, 60, e2021RG000749. [Google Scholar] [CrossRef]
- Bao, X.; Ye, F.; Zhang, H.; Jin, C. Research on the progress of in-site testing methods for broadband seismograph performance. Prog. Geophys. 2023, 38, 1739–1756. [Google Scholar]
- Zhou, Q.; Shen, X. Comparison and analysis of the observations from broadband and short-period seismometers in noisy environment. Prog. Geophys. 2021, 36, 1916–1926. [Google Scholar]
- Schimmel, A.; Hübl, J.; McArdell, B.W.; Walter, F. Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors 2018, 18, 1658. [Google Scholar] [CrossRef]
- Huang, C.-J.; Chen, H.-Y.; Chu, C.-R.; Lin, C.-R.; Yen, L.-C.; Yin, H.-Y.; Wang, C.-C.; Kuo, B.-Y. Low-Frequency Ground Vibrations Generated by Debris Flows Detected by a Lab-Fabricated Seismometer. Sensors 2022, 22, 9310. [Google Scholar] [CrossRef]
- Yao, Z.; Duan, Y.; Li, L.; Hong, L. Bandwidth Extension of Seismometer by Using a Novel Topology Leaf Spring. Rev. Sci. Instrum. 2019, 90, 076109. [Google Scholar] [CrossRef]
- Barzilai, A.; VanZandt, T.; Kenny, T. Improving the performance of a geophone through capacitive position sensing and feedback. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 15–20 November 1998; American Society of Mechanical Engineers: New York, NY, USA, 1998; pp. 629–636. [Google Scholar]
- Collette, C.; Matichard, F. Sensor fusion methods for high performance active vibration isolation systems. Sound Vib. 2015, 342, 1–21. [Google Scholar] [CrossRef]
- Kinoshita, S. Low-frequency and trend compensation of broadband seismograms. Earth Planets Space 2012, 64, e5–e8. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, X.; Wang, T.; Li, X.; Xiao, W.; Wu, Z. A digital low-frequency geophone based on 4th-order sigma-delta modulator and single-coil velocity feedback. Sens. Actuators A Phys. 2020, 312, 112074. [Google Scholar] [CrossRef]
- VanZandt, T.R.; Manion, S.J. Method and Apparatus for Improving Performance of a Force Balance Accelerometer Based on a Single-Coil Velocity Geophone. U.S. Patent 6918299B2, 19 July 2005. [Google Scholar]
- Choi, J.; Yoo, H.; Choi, E.; Kim, K.; Kim, H.-J. An Active Geophone Sensor with Optimized State Variable Filter for Measuring Low-Band Frequencies. Int. J. Precis. Eng. Manuf. 2024, 25, 981–993. [Google Scholar] [CrossRef]
- Yang, D.; Yang, T.; Wang, Y.; Liu, D. Development of improved short-period geophone: Implementation of low-frequency compensation. Measurement 2024, 234, 114799. [Google Scholar] [CrossRef]
- Ma, K.; Wu, J.; Ma, Y.; Xu, B.; Qi, S.; Jiang, X. An Effective Method for Improving Low-Frequency Response of Geophone. Sensors 2023, 23, 3082. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Yan, X. The Principle and Simulation of Moving-coil Velocity Detector. In Proceedings of the 2017 2nd International Conference on Electrical and Electronics: Techniques and Applications (EETA2017), Beijing, China, 15–16 January 2017; pp. 280–286. [Google Scholar]
- Motchenbacher, C.D.; Connelly, J.A. Low-Noise Electronic System Design; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Liu, P.; Mo, D.; Hong, F. The Application of T-type Feedback Resistor Network in Weak Signal Amplification Circuits. Electr. Meas. Instrum. 1999, 12, 31–32+6. [Google Scholar]
- Ding, L.; Chen, Z.; Pan, Y.; Song, B. Mine microseismic time series data integrated classification based on improved wavelet decomposition and ELM. Cogn. Comput. 2022, 14, 1526–1546. [Google Scholar] [CrossRef]
- Ernesto, S.-F.; Oscar, C.; Ramon, P.A. Common mode electronic noise in differential circuits. Measurement 2019, 140, 207–214. [Google Scholar] [CrossRef]
- Barzilai, A.; VanZandt, T.; Kenny, T. Technique for measurement of the noise of a sensor in the presence of large background signals. Rev. Sci. Instrum. 1998, 69, 2767–2772. [Google Scholar] [CrossRef]
- Rodgers, P.W. Frequency limits for seismometers as determined from signal-to-noise ratios. Part 2. The feedback seismometer. Bull. Seismol. Soc. Am. 1992, 82, 1099–1123. [Google Scholar] [CrossRef]
- Riedesel, M.A.; Orcutt, J.A.; Moore, R.D. Limits of sensitivity of inertial seismometers with velocity transducers and electronic amplifiers. Bull. Seismol. Soc. Am. 1990, 80, 1725–1752. [Google Scholar] [CrossRef]
- Zuo, L.; Nayfeh, S.A. An integral sliding control for robust vibration isolation and its implementation. In Smart Structures and Materials 2004: Damping and Isolation; SPIE: Bellingham, WA, USA, 2004; pp. 1–10. [Google Scholar]
- Zhou, Z.; Chen, X.; Zhou, B. Feedforward compensation in vibration isolation system subject to base disturbance. J. Vib. Controll. 2015, 21, 1201–1209. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Park, K. Magneticforcedrivensixdegree-of-freedom active vibration isolation system using a phase compensated velocity sensor. Rev. Sci. Instrum. 2009, 80, 045108. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Park, K. Design and control of six degree-of-freedom active vibration isolation table. Rev. Sci. Instrum. 2010, 81, 035106. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J. Observations and Modeling of Seismic Background Noise; US Geological Survey: Reston, VA, USA, 1993; Volume 93.
Mechanical System | Electrical System |
---|---|
Component Parameters | Numerical Value |
---|---|
(F) | |
(mH) | |
2.256 () | |
Transformer Turns Ratio 1:K | 1:100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Lian, Z.; Ye, J.; Qin, K.; Wang, Y.; Li, F.; Meng, X. Design of Low-Frequency Extended Signal Conditioning Circuit for Coal Mine Geophone. Sensors 2025, 25, 5946. https://doi.org/10.3390/s25195946
Deng Z, Lian Z, Ye J, Qin K, Wang Y, Li F, Meng X. Design of Low-Frequency Extended Signal Conditioning Circuit for Coal Mine Geophone. Sensors. 2025; 25(19):5946. https://doi.org/10.3390/s25195946
Chicago/Turabian StyleDeng, Zhigang, Zewei Lian, Jinjiao Ye, Kai Qin, Yanbin Wang, Feng Li, and Xiangfeng Meng. 2025. "Design of Low-Frequency Extended Signal Conditioning Circuit for Coal Mine Geophone" Sensors 25, no. 19: 5946. https://doi.org/10.3390/s25195946
APA StyleDeng, Z., Lian, Z., Ye, J., Qin, K., Wang, Y., Li, F., & Meng, X. (2025). Design of Low-Frequency Extended Signal Conditioning Circuit for Coal Mine Geophone. Sensors, 25(19), 5946. https://doi.org/10.3390/s25195946