Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach
Abstract
1. Introduction
1.1. Background
1.2. Related Work
1.3. Motivation, Contribution, and Organization
- We established a TS-SWIPT-based multi-hop DF relay network requiring only source node power supply, and converted the corresponding non-convex throughput maximization problem into a convex optimization formulation through logarithmic transformation.
- By employing the log barrier method, the optimal solution of this convex optimization problem can be iteratively obtained with low computational complexity and a superlinear convergence rate.
- Through comprehensive simulations, we validate the optimality of our proposed scheme. The system performance under various parameters is analyzed, with particular focus on the relationship between the number of relays and the system throughput. Furthermore, the algorithm’s rapid convergence characteristics confirm its practical viability for real-world communication systems.
2. System Model and Problem Formulation
3. Convex Optimization Problem Transformation
4. Optimization Method Selection for Solving the Target Convex Problem
5. Optimal TS Ratio Allocation: A Log Barrier Approach
5.1. Construction of the Barrier Problem
5.2. Initialization
5.3. Outer Loop
5.3.1. Check the Stopping Criteria in the Outer Loop
5.3.2. Inner Loop
- 1
- Gradient computation
- 2
- Hessian matrix computation
- 3
- Newton direction computation
- 4
- Newton decrement computation
- 5
- Backtracking Line Search
- 6
- Update the primal variables
- 7
- Check whether the inner loop should stop
5.3.3. Update the Barrier Parameter
Algorithm 1. The proposed algorithm |
Begin |
Construct joint log barrier function Construct barrier objective function |
Initialization: |
Set strictly feasible initial point satisfying (16b)–(16e) |
Set initial barrier parameter , update factor , tolerance , Newton tolerance |
while do ▷ Outer loop: Barrier parameter update |
Set Newton initial point |
repeat ▷ Inner loop: Newton’s method |
Compute gradient |
Compute Hessian matrix |
Solve Newton system for search direction |
Compute Newton decrement |
Set backtracking line search parameters , , |
while true do ▷ Backtracking line search |
if strictly feasible and |
break |
else |
Update |
end if |
end while |
Update and |
until ▷ Newton convergence criteria |
Update ▷ Prepare for next outer iteration |
Update ▷ Increase barrier parameter |
end while |
Output optimal solution |
End |
6. Simulation Results and Discussion
6.1. Throughput vs. Maximum Source Transmit Power
6.2. Throughput vs. Number of Relays
6.3. Throughput vs. Rectification Efficiency
6.4. Computational Efficiency Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SWIPT | Simultaneous wireless information and power transfer |
DF | Decode-and-forward |
TS | Time-switching |
WSN | Wireless sensor network |
IoT | Internet of Things |
LoS | Line-of-sight |
SNR | Signal-to-noise ratio |
EH | Energy harvesting |
RF | Radio frequency |
PS | Power-splitting |
ID | Information decoding |
AF | Amplify-and-forward |
CSI | Channel state information |
QoS | Quality of service |
IWSN | Industrial wireless sensor network |
SCA | Successive convex approximation |
AoI | Age of Information |
D2D | Device-to-device |
SCP | Secrecy connectivity probability |
AI | Artificial intelligence |
DNN | Deep neural network |
CNN | Convolutional neural network |
GPU | Graphics processing unit |
AWGN | Additive white Gaussian noise |
Appendix A
Appendix B
Appendix C
References
- Deng, Y.; Chen, Z.; Chen, X.; Fang, Y. Task Offloading in Multi-Hop Relay-Aided Multi-Access Edge Computing. IEEE Trans. Veh. Technol. 2022, 72, 1372–1376. [Google Scholar] [CrossRef]
- Huan, X.; Kim, K.S.; Lee, S.; Lim, E.G.; Marshall, A. A Beaconless Asymmetric Energy-Efficient Time Synchronization Scheme for Resource-Constrained Multi-Hop Wireless Sensor Networks. IEEE Trans. Commun. 2019, 68, 1716–1730. [Google Scholar] [CrossRef]
- Van Leemput, D.; Hoebeke, J.; De Poorter, E. Integrating Battery-Less Energy Harvesting Devices in Multi-Hop Industrial Wireless Sensor Networks. IEEE Commun. Mag. 2024, 62, 66–73. [Google Scholar] [CrossRef]
- Heidari, H.; Onireti, O.; Das, R.; Imran, M. Energy Harvesting and Power Management for IoT Devices in the 5G Era. IEEE Commun. Mag. 2021, 59, 91–97. [Google Scholar] [CrossRef]
- Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.W.K.; Schober, R. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 2014, 52, 104–110. [Google Scholar] [CrossRef]
- Costanzo, A.; Masotti, D.; Paolini, G.; Schreurs, D. Evolution of SWIPT for the IoT World: Near- and Far-Field Solutions for Simultaneous Wireless Information and Power Transfer. IEEE Microw. Mag. 2021, 22, 48–59. [Google Scholar] [CrossRef]
- Lee, J.B.; Rong, Y.; Gopal, L.; Chiong, C.W.R. Robust Transceiver Design for SWIPT DF MIMO Relay Systems with Time-Switching Protocol. IEEE Syst. J. 2021, 16, 5651–5662. [Google Scholar] [CrossRef]
- Sun, W.; Song, Q.; Zhao, J.; Guo, L.; Jamalipour, A. Adaptive Resource Allocation in SWIPT-Enabled Cognitive IoT Networks. IEEE Internet Things J. 2021, 9, 535–545. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, R.; Cheng, X.; Yang, L. Capacity-Enhancing Full-Duplex Relay Networks based on Power-Splitting (PS-)SWIPT. IEEE Trans. Veh. Technol. 2016, 66, 5445–5450. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Qin, J. Secure Relay Beamforming for SWIPT in Amplify-and-Forward Two-Way Relay Networks. IEEE Trans. Veh. Technol. 2016, 65, 9006–9019. [Google Scholar] [CrossRef]
- Lee, H.; Song, C.; Choi, S.-H.; Lee, I. Outage Probability Analysis and Power Splitter Designs for SWIPT Relaying Systems with Direct Link. IEEE Commun. Lett. 2017, 21, 648–651. [Google Scholar] [CrossRef]
- Ye, Y.; Li, Y.; Wang, Z.; Chu, X.; Zhang, H. Dynamic Asymmetric Power Splitting Scheme for SWIPT-Based Two-Way Multiplicative AF Relaying. IEEE Signal Process. Lett. 2018, 25, 1014–1018. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, R.; Cheng, X.; Yang, L.; Chen, C. Relay Selection in Full-Duplex Energy-Harvesting Two-Way Relay Networks. IEEE Trans. Green Commun. Netw. 2017, 1, 182–191. [Google Scholar] [CrossRef]
- Agrawal, K.; Prakriya, S.; Flanagan, M.F. Optimization of SWIPT With Battery-Assisted Energy Harvesting Full-Duplex Relays. IEEE Trans. Green Commun. Netw. 2020, 5, 243–260. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, X.; Beaulieu, N.C.; Wang, R.; Wang, S. Joint Source and Relay Beamforming Design for Full-Duplex MIMO AF Relay SWIPT Systems. IEEE Commun. Lett. 2016, 20, 320–323. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, Z.; Beaulieu, N.C.; Liu, D.; Liu, X. Power Allocation for SWIPT in Full-Duplex AF Relay Interference Channels Using Game Theory. IEEE Commun. Lett. 2020, 24, 608–611. [Google Scholar] [CrossRef]
- Fan, R.; Atapattu, S.; Chen, W.; Zhang, Y.; Evans, J. Throughput Maximization for Multi-Hop Decode-and-Forward Relay Network with Wireless Energy Harvesting. IEEE Access 2018, 6, 24582–24595. [Google Scholar] [CrossRef]
- Asiedu, D.K.P.; Lee, H.; Lee, K.-J. Simultaneous Wireless Information and Power Transfer for Decode-and-Forward Multihop Relay Systems in Energy-Constrained IoT Networks. IEEE Internet Things J. 2019, 6, 9413–9426. [Google Scholar] [CrossRef]
- Ma, K.; Li, Z.; Liu, P.; Yang, J.; Geng, Y.; Yang, B.; Guan, X. Reliability-Constrained Throughput Optimization of Industrial Wireless Sensor Networks with Energy Harvesting Relay. IEEE Internet Things J. 2021, 8, 13343–13354. [Google Scholar] [CrossRef]
- Mishra, A.K.; Agrawal, K.; Prakriya, S. Performance of a Cluster-Based Multihop IoT Network with Battery-Assisted Energy Harvesting. IEEE Internet Things J. 2024, 12, 5901–5917. [Google Scholar] [CrossRef]
- Stai, E.; Karyotis, V. Optimal Resource Allocation in Multihop Wireless Networks Relying on Energy Harvesting. IEEE Commun. Lett. 2020, 25, 224–228. [Google Scholar] [CrossRef]
- Pavani, B.; Devi, L.N.; Subbareddy, K.V. Energy enhancement and efficient route selection mechanism using H-SWIPT for multi-hop IoT networks. Intell. Converg. Networks 2022, 3, 173–189. [Google Scholar] [CrossRef]
- Chen, K.; Benkhelifa, F.; Gao, H.; McCann, J.A.; Li, J. Minimizing Age of Information in Multihop Energy-Harvesting Wireless Sensor Network. IEEE Internet Things J. 2022, 9, 25736–25751. [Google Scholar] [CrossRef]
- Si, G.; Dou, Z.; Lin, Y.; Qi, L.; Wang, M. Relay Selection and Secure Connectivity Analysis in Energy Harvesting Multi-Hop D2D Networks. IEEE Commun. Lett. 2021, 26, 1245–1248. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Nguyen, V.-D.; da Costa, D.B.; An, B. Short-Packet Communications in Multi-Hop WPINs: Performance Analysis and Deep Learning Design. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Nguyen, T.-V.; Nguyen, V.-D.; da Costa, D.B.; Huynh-The, T.; Hu, R.Q.; An, B. Short-Packet Communications in Multihop Networks With WET: Performance Analysis and Deep Learning-Aided Optimization. IEEE Trans. Wirel. Commun. 2022, 22, 439–456. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Huynh-The, T.; Nguyen, V.-D.; Da Costa, D.B.; Hu, R.Q.; An, B. An Efficient Deep CNN Design for EH Short-Packet Communications in Multihop Cognitive IoT Networks. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 2102–2107. [Google Scholar]
- Chen, E.; Xia, M.; da Costa, D.B.; Aissa, S. Multi-Hop Cooperative Relaying with Energy Harvesting from Cochannel Interferences. IEEE Commun. Lett. 2017, 21, 1199–1202. [Google Scholar] [CrossRef]
- Liu, X.; Wen, Z.; Liu, D.; Zou, J.; Li, S. Joint Source and Relay Beamforming Design in Wireless Multi-Hop Sensor Networks with SWIPT. Sensors 2019, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
Symbol | Definition |
---|---|
The source node | |
The -th relay node, | |
The destination node | |
The number of the relay nodes, a positive integer, with typical values being 1, 2, 3, 4, and 5 | |
The channel coefficient between and , | |
The channel gain between and , | |
The EH and ID period | |
The TS ratio at the -th relay node, | |
The information symbol at , | |
The received signal at , | |
The transmit power at , | |
The AWGN at , | |
The variance of the AWGN | |
The rectification efficiency of relay node , , | |
The harvested energy at relay node , | |
The transmission bandwidth | |
The received SNR at , | |
(auxiliary constant) | |
, (auxiliary constant) | |
The achievable data rate of hop , | |
The end-to-end achievable data rate from to | |
The minimum transmit power of | |
The maximum transmit power of |
Symbol | Definition |
---|---|
, | Two arbitrary values of , |
, (auxiliary constant) | |
The Hessian matrix of | |
(auxiliary auxiliary) | |
, (auxiliary auxiliary) | |
(auxiliary auxiliary) | |
(auxiliary function) | |
, (auxiliary function) | |
(auxiliary function) | |
(auxiliary function) | |
, (auxiliary function) | |
(auxiliary function) |
Method | Initial Point | Performance Characteristics |
---|---|---|
Interior point method | Feasible point |
|
Exterior point method | Arbitrary point |
|
Lagrangian dual method | Arbitrary point |
|
Symbol | Definition |
---|---|
The number of independent variables in Problem (16), | |
, (auxiliary constant) | |
The log barrier function, | |
The barrier parameter, | |
The barrier objective function, | |
The update factor for in the outer loop, | |
The tolerance for the stopping criterion in the outer loop of the log barrier method, | |
The tolerance for the stopping criterion in the inner loop of the log barrier method, | |
The total number of the constraints in Problem (16), | |
The gradient of | |
The Hessian matrix of | |
The step size of , | |
The step size of | |
The Newton decrement, | |
The step size to update the and in the inner loop | |
The constant to update , | |
The constant used in the Armijo condition, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Tang, X.; Xie, G. Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach. Sensors 2025, 25, 5901. https://doi.org/10.3390/s25185901
Yu Y, Tang X, Xie G. Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach. Sensors. 2025; 25(18):5901. https://doi.org/10.3390/s25185901
Chicago/Turabian StyleYu, Yang, Xiaoqing Tang, and Guihui Xie. 2025. "Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach" Sensors 25, no. 18: 5901. https://doi.org/10.3390/s25185901
APA StyleYu, Y., Tang, X., & Xie, G. (2025). Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach. Sensors, 25(18), 5901. https://doi.org/10.3390/s25185901