Response of Nearby Sensors to Variable Doses of Nitrogen Fertilization in Winter Fodder Crops Under Mediterranean Climate
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Installation
2.2. Top-Dressing N Fertilization at a Variable Rate
2.3. Optical Sensors for Monitorization
2.4. Smart On-Farm Sampling
2.4.1. Collecting Digital Samples
2.4.2. Collecting Vegetal Samples
2.5. Statistical Analysis
3. Results
3.1. Inferential and Descriptive Statistics
3.2. Normality Test and Significance Tests
3.3. Correlation Matrix
3.4. Maps of Sampling Points
3.5. Maps of Homogeneous Zones and Fertilizer Application
4. Discussion
4.1. Optical Sensors in Nitrogen Fertilization Management Sensors’ Response
4.2. Efficiency and Reduction in Fertilizer Used
4.3. Practical Implications of Sensor Use in Winter Fodder Crops in Mediterranean Climate
4.4. Use of On-the-Go Sensors and Modelling N Fertilization of Fodder Crops in Mediterranean Climate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HMA | Handheld Multispectral Active |
UAV | Unmanned Aircraft Vehicle |
OTG | On-the-Go |
N | Nitrogen |
PFM | Plant Fresh Matter |
PDM | Plant Dry Matter |
PNC | Plant Nitrogen Content |
CP | Crude Protein |
CPyield | Crude Protein Per Unit of Area |
NUp | Nitrogen Uptake |
NDVI | Normalized Difference Vegetation Index |
VRA | Variable Rate Application |
Tm | Daily Average Air Temperature |
P | Precipitation |
P2O5 | Phosphorus |
K2O | Potassium |
QGIS | Quantum Geographic Information System |
IDW | Inverse Distance Weighted |
R | Red |
G | Green |
B | Blue |
RE | Red-Edge |
NIR | Near-Infrared |
SD | Standard Deviation |
CV | Coefficient of Variation |
VRF | Variable Rate Fertilization |
References
- Patle, R.; Kavitha, R.; Surendrakumar, A.; Balaji, K.; Maragatham, S.; Suthakar, B. Estimation of Sensor-Based Site Specific Variable Rate Fertilizer Application for Maize (Zea mays L.) Crop. J. Appl. Nat. Sci. 2023, 15, 1109–1118. [Google Scholar] [CrossRef]
- Mitra, B.; Singha, P.; Roy Chowdhury, A.; Sinha, A.K.; Skalicky, M.; Laing, A.M.; Alamri, S.; Hossain, A. Optical Sensor-Based Nitrogen Management: An Environmentally Friendly and Cost-Effective Approach for Sustainable Wheat (Triticum aestivum L.) Production on Eastern Plains of India. Front. Sustain. Food Syst. 2023, 7, 1153575. [Google Scholar] [CrossRef]
- Cerasola, V.A.; Orsini, F.; Pennisi, G.; Moretti, G.; Bona, S.; Mirone, F.; Verrelst, J.; Berger, K.; Gianquinto, G. Hyperspectral Imaging for Precision Nitrogen Management: A Comparative Exploration of Two Methodological Approaches to Estimate Optimal Nitrogen Rate in Processing Tomato. Smart Agric. Technol. 2025, 10, 100802. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Kusnierek, K.; Geipel, J. Gaussian Process Modeling of In-Season Physiological Parameters of Spring Wheat Based on Airborne Imagery from Two Hyperspectral Cameras and Apparent Soil Electrical Conductivity. Remote Sens. 2022, 14, 5977. [Google Scholar] [CrossRef]
- Laveglia, S.; Altieri, G.; Genovese, F.; Matera, A.; Di Renzo, G.C. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering 2024, 6, 3084–3120. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. ISO 11783-Compatible Industrial Sensor and Control Systems and Related Research: A Review. Comput. Electron. Agric. 2019, 163, 104863. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Tsadilas, C.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Spyropoulos, N.; Dalezios, N.R.; Eskridge, K. Variable-Rate Nitrogen Fertilization of Winter Wheat under High Spatial Resolution. Precis. Agric. 2018, 19, 570–587. [Google Scholar] [CrossRef]
- Hagn, L.; Mittermayer, M.; Kern, A.; Kimmelmann, S.; Maidl, F.-X.; Hülsbergen, K.-J. Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency. Sensors 2025, 25, 795. [Google Scholar] [CrossRef]
- Medel-Jiménez, F.; Piringer, G.; Gronauer, A.; Barta, N.; Neugschwandtner, R.W.; Krexner, T.; Kral, I. Modelling Soil Emissions and Precision Agriculture in Fertilization Life Cycle Assessment—A Case Study of Wheat Production in Austria. J. Clean. Prod. 2022, 380, 134841. [Google Scholar] [CrossRef]
- Milics, G. A Coupled Impact of Different Management and Soil Moisture on Yield of Winter Wheat (Triticum aestivum L.) in Dry Conditions at Locality Mezőföld, Hungary. J. Hydrol. Hydromech. 2021, 69, 76–86. [Google Scholar] [CrossRef]
- Colaço, A.F.; Bramley, R.G.V. Site–Year Characteristics Have a Critical Impact on Crop Sensor Calibrations for Nitrogen Recommendations. Agron. J. 2019, 111, 2047–2059. [Google Scholar] [CrossRef]
- He, L. Variable Rate Technologies for Precision Agriculture. In Encyclopedia of Smart Agriculture Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–9. [Google Scholar]
- Liang, L. Calibrating Low-Cost Sensors for Ambient Air Monitoring: Techniques, Trends, and Challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef]
- Späti, K.; Huber, R.; Finger, R. Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecol. Econ. 2021, 185, 107047. [Google Scholar] [CrossRef]
- Köppen, W. Versuch Einer Klassifikation Der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. Available online: https://www.jstor.org/stable/27803924 (accessed on 11 July 2025).
- Instituto de Meteorologia. Ministério Da Ciência, Tecnologia e Ensino Superior; Instituto de Meteorologia: Lisboa, Portugal, 2009. [Google Scholar]
- Cardoso, J. A Classificação de Solos de Portugal. In Boletim de Solos do SROA; SROA: Lisboa, Portugal, 1974; Volume 17, pp. 14–46. [Google Scholar]
- Qgis Association. QGIS.org QGIS Geographic Information System. 2022. Available online: https://qgis.org/ (accessed on 5 July 2025).
- Kjeldahl, J. Neue Methode Zur Bestimmung Des Stickstoffs in Organischen Körpern. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Revelle, W. Package Psych, 2.4.12; CRAN: Boston, MA, USA, 2024. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Hawkesford, M.J.; Riche, A.B. Impacts of G x E x M on Nitrogen Use Efficiency in Wheat and Future Prospects. Front. Plant Sci. 2020, 11, 1157. [Google Scholar] [CrossRef] [PubMed]
- Arjasakusuma, S.; Yamaguchi, Y.; Nakaji, T.; Kosugi, Y.; Shamsuddin, S.-A.; Lion, M. Assessment of Values and Trends in Coarse Spatial Resolution NDVI Datasets in Southeast Asia Landscapes. Eur. J. Remote Sens. 2018, 51, 863–877. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Carvalho, J.d.F.C.; Sibaldelli, R.N.R.; Neiverth, W.; do Rio, A.; Ferreira, L.C.; Procópio, S.d.O.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. NDVI Variation According to the Time of Measurement, Sampling Size, Positioning of Sensor and Water Regime in Different Soybean Cultivars. Precis. Agric. 2017, 18, 470–490. [Google Scholar] [CrossRef]
- Wang, Y.; An, J.; Shao, M.; Wu, J.; Zhou, D.; Yao, X.; Zhang, X.; Cao, W.; Jiang, C.; Zhu, Y. A Comprehensive Review of Proximal Spectral Sensing Devices and Diagnostic Equipment for Field Crop Growth Monitoring. Precis. Agric. 2025, 26, 54. [Google Scholar] [CrossRef]
- Tian, F.; Zhou, J.; Ransom, C.J.; Aloysius, N.; Sudduth, K.A. Estimating Corn Leaf Chlorophyll Content Using Airborne Multispectral Imagery and Machine Learning. Smart Agric. Technol. 2025, 10, 100719. [Google Scholar] [CrossRef]
- Nogueira, F.H.M.; dos Santos Teixeira, A.; Ribeiro, S.G.; Moreira, L.C.J.; da Rocha Neto, O.C.; Lopes, F.B.; Nogueira, R.E.F.Q. A Handheld Multispectral Device for Assessing Leaf Nitrogen Concentrations in Maize. Sensors 2025, 25, 3929. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Liu, S.; Hui, X.; Zhang, H.; Yan, H.; Maes, W.H. UAV-Based Multiple Sensors for Enhanced Data Fusion and Nitrogen Monitoring in Winter Wheat Across Growth Seasons. Remote Sens. 2025, 17, 498. [Google Scholar] [CrossRef]
- Caturegli, L.; Gaetani, M.; Volterrani, M.; Magni, S.; Minelli, A.; Baldi, A.; Brandani, G.; Mancini, M.; Lenzi, A.; Orlandini, S.; et al. Normalized Difference Vegetation Index versus Dark Green Colour Index to Estimate Nitrogen Status on Bermudagrass Hybrid and Tall Fescue. Int. J. Remote Sens. 2020, 41, 455–470. [Google Scholar] [CrossRef]
- Cao, S.; Danielson, B.; Clare, S.; Koenig, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Radiometric Calibration Assessments for UAS-Borne Multispectral Cameras: Laboratory and Field Protocols. ISPRS J. Photogramm. Remote Sens. 2019, 149, 132–145. [Google Scholar] [CrossRef]
- Krienke, B.; Ferguson, R.; Maharjan, B. Using an Unmanned Aerial Vehicle to Evaluate Nitrogen Variability and Distance Effect with an Active Crop Canopy Sensor. In Precision agriculture ’15; Brill|Wageningen Academic: Wageningen, The Netherlands, 2015; pp. 143–150. [Google Scholar]
- Reddy, B.S.; Neeraja, S. An Optimal Superpixel Segmentation Based Transfer Learning Using AlexNet–SVM Model for Weed Detection. Int. J. Syst. Assur. Eng. Manag. 2023. [Google Scholar] [CrossRef]
- Adhinata, F.D.; Wahyono; Sumiharto, R. A Comprehensive Survey on Weed and Crop Classification Using Machine Learning and Deep Learning. Artif. Intell. Agric. 2024, 13, 45–63. [Google Scholar] [CrossRef]
- Galdelli, A.; Pesaresi, S.; Quattrini, G.; Pierdicca, R.; Thaliath, A.B.; Mancini, A. VegRecoverAI: A Deep Learning-Based System for Automated Vegetation Recovery Assessment and Prediction with Demonstration Case Study on Gas Pipeline Construction. Environ. Model. Softw. 2025, 193, 106601. [Google Scholar] [CrossRef]
- Sajith Variyar, V.V.; Sowmya, V.; Sivanpillai, R.; Brown, G.K. Significance of AI-Assisted Techniques for Epiphyte Plant Monitoring and Identification from Drone Images. J. Environ. Manage. 2024, 367, 121996. [Google Scholar] [CrossRef]
- Panacho Ferreira, B.; Henrique Campos Moreira, P.; Silva, L.H.F.P.; Mari, J.F. Evaluating Deep Learning Models for Effective Weed Classification in Agricultural Images. Rev. Informática Teórica Apl. 2025, 32, 265–272. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayananad, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen Use Efficiency—A Key to Enhance Crop Productivity under a Changing Climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X.; Jiang, Y. Response of Nitrogen Losses to Excessive Nitrogen Fertilizer Application in Intensive Greenhouse Vegetable Production. Sustainability 2019, 11, 1513. [Google Scholar] [CrossRef]
- Shi, X.; Hao, X.; Shi, F.; Li, N.; Tian, Y.; Han, P.; Wang, J.; Liu, P.; Luo, H. Improving Cotton Productivity and Nutrient Use Efficiency by Partially Replacing Chemical Fertilizers with Organic Liquid Fertilizer under Mulched Drip Irrigation. Ind. Crops Prod. 2024, 216, 118731. [Google Scholar] [CrossRef]
- Chen, F.; Ma, X.; Hao, X.; Liu, Z.; Guo, Z. Effect of Organic Fertilization Combined with Reduced Chemical Fertilization on Yield, Nutrient Uptake and Nitrogen Utilization Efficiency of Maize. J. Irrig. Drain. 2024, 43, 49–56. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Camacho-Ferre, F.; Marquina, J.C.T.; Belmonte-Ureña, L.J. Biodisinfection as a Profitable Fertilization Method for Horticultural Crops in the Framework of the Circular Economy. Agronomy 2022, 12, 521. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Janeckova Molnarova, K.; Bohnet, I.C.; Svobodova, K.; Černý Pixová, K.; Daniels, M.; Skaloš, J.; Drhlíková, K.; Azadi, H.; Zámečník, R.; Sklenička, P. Does Increasing Farm Plot Size Influence the Visual Quality of Everyday Agricultural Landscapes? Int. J. Environ. Res. Public Health 2022, 20, 687. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Roy, D.P. Conterminous United States Crop Field Size Quantification from Multi-Temporal Landsat Data. Remote Sens. Environ 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Mao, M.; Liu, H.; Zhu, X. Analysis of the Impact of Agricultural Machinery Fieldwork Patterns and Plot Size on Productivity. In Proceedings of the 2024 7th International Conference on Data Science and Information Technology (DSIT), Nanjing, China, 20 December 2024; pp. 1–6. [Google Scholar]
- Heider, K.; Rodriguez Lopez, J.M.; García Avilés, J.M.; Balbo, A.L. Land Fragmentation Index for Drip-Irrigated Field Systems in the Mediterranean: A Case Study from Ricote (Murcia, SE Spain). Agric. Syst. 2018, 166, 48–56. [Google Scholar] [CrossRef]
- European Commission. Monitoring of Nitrogen-Based Fertilisers Prices; European Commission: Brussel, Belgium, 2025. [Google Scholar]
- Tekin, A.B. Variable Rate Fertilizer Application in Turkish Wheat Agriculture: Economic Assessment. Afr. J. Agric. Res. 2010, 5, 647–652. [Google Scholar]
- Shi, Y.; Chen, M.; Wang, X.; Yang, H.; Yu, H.; Hao, X. Efficiency Analysis and Evaluation of Centrifugal Variable-Rate Fertilizer Spreading Based on Real-Time Spectral Information on Rice. Comput. Electron. Agric. 2023, 204, 107505. [Google Scholar] [CrossRef]
Month | Tm Normal (°C) | P Normal (mm) |
---|---|---|
October | 17.4 | 58.6 |
November | 12.5 | 75.1 |
December | 9.7 | 92.6 |
January | 8.6 | 63.1 |
February | 10.2 | 54.6 |
March | 12.3 | 39.6 |
April | 14.1 | 51.2 |
Parameter | Value |
---|---|
Operation | Variable rate fertilization in real time |
Crop | Pasture |
Working height | 28 m |
Fertilizer | Nitro 27–0–0 (27% N) |
Maximum dose applied | 150 kg ha−1 |
Minimum dose applied | 75 kg ha−1 |
PFM (kg ha−1) | PDM (kg ha−1) | PNC (%) | CP (%) | CPyield (kg ha−1) | NUp (kg ha−1) | NDVI_OTG | UAV_I | UAV_II | NDVI_HMA | |
---|---|---|---|---|---|---|---|---|---|---|
No. samples | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Min | 5800 | 502 | 1.49 | 9.31 | 54.7 | 8.8 | 0.40 | 0.50 | 0.44 | 0.57 |
Max | 20,400 | 5079 | 3.56 | 22.23 | 664.9 | 106.4 | 0.44 | 0.72 | 0.85 | 0.85 |
Mean | 11,033 | 2403 | 2.22 | 13.87 | 329.3 | 52.7 | 0.42 | 0.65 | 0.72 | 0.72 |
Median | 10,000 | 2130 | 2.12 | 13.23 | 279.7 | 44.8 | 0.42 | 0.64 | 0.72 | 0.74 |
SD | 4100 | 1259 | 0.53 | 3.31 | 165.1 | 26.4 | 0.01 | 0.05 | 0.10 | 0.07 |
CV | 37.2 | 52.4 | 23. 9 | 23. 9 | 50.1 | 50.1 | 2.7 | 8.0 | 14.1 | 9.5 |
PFM (kg ha−1) | PDM (kg ha−1) | PNC (%) | CP (%) | CPyield (kg ha−1) | NUp (kg ha−1) | NDVI_OTG | UAV_I | UAV_II | NDVI_HMA | |
---|---|---|---|---|---|---|---|---|---|---|
Shapiro–Wilk (p-value) | 0.013 | 0.035 | 0.007 | 0.007 | 0.478 | 0.478 | 0.263 | 0.053 | 0.045 | 0.563 |
Significance test | Kruskal–Wallis | Kruskal–Wallis | Kruskal–Wallis | Kruskal–Wallis | ANOVA | ANOVA | ANOVA | ANOVA | Kruskal–Wallis | ANOVA |
Dependent Variables | Homogenous Zone Class | Dose N Applied | NDVI_OTG |
---|---|---|---|
PFM | 0.291 | 0.515 | 0.456 |
PDM | 0.581 | 0.723 | 0.456 |
PNC | 0.648 | 0.591 | 0.456 |
CP | 0.648 | 0.591 | 0.456 |
CPyield | 0.681 | 0.993 | 0.175 |
NUp | 0.681 | 0.993 | 0.175 |
NDVI_OTG | 0.562 | 0.116 | - |
UAV_I | 0.888 | 0.799 | 0.278 |
UAV_II | 0.678 | 0.380 | 0.456 |
NDVI_HMA | 0.335 | 0.205 | 0.330 |
Classes | Trial | Area (ha) | Representativity (%) | Fertilizer Rate (kg ha−1) | Total Fertilizer Applied (kg ha−1) |
---|---|---|---|---|---|
- | Hypothetical fixed rate | 1.5 | 100 | 150 | 225 |
1 | Variable rate | 0.002 | 0.14 | 90 | 0.180 |
2 | 0.017 | 1.16 | 105 | 1.785 | |
3 | 0.741 | 50.34 | 120 | 88.920 | |
4 | 0.739 | 50.20 | 135 | 99.765 |
Sensor | Classification | Key Characteristic | Spatial Resolution | Digitization Footprint | Processing Effort/Time |
---|---|---|---|---|---|
HMA sensor | Active | Point sampling | 50 cm2 per reading | 98 Kb | 1 h (interpolation and map generation) |
UAV multispectral camera | Passive | Multi-band | 5.3 cm/pixel | 3 GB per ha | 2 h (orthomosaic generation and NDVI calculation) |
OTG sensor | Passive (sunlight sensing) | Real time, AI driven | 12 pixel/cm (2.54 ppi) | 106 Mb per ha | Instantaneous (processes on-the-go) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.; Brunelli, C.; Moreira, R.; Barbosa, S.; Fernandes, M.; Miguel, A.; Maçãs, B.; Valero, C.; Patanita, M.; Lidon, F.C.; et al. Response of Nearby Sensors to Variable Doses of Nitrogen Fertilization in Winter Fodder Crops Under Mediterranean Climate. Sensors 2025, 25, 5811. https://doi.org/10.3390/s25185811
Silva L, Brunelli C, Moreira R, Barbosa S, Fernandes M, Miguel A, Maçãs B, Valero C, Patanita M, Lidon FC, et al. Response of Nearby Sensors to Variable Doses of Nitrogen Fertilization in Winter Fodder Crops Under Mediterranean Climate. Sensors. 2025; 25(18):5811. https://doi.org/10.3390/s25185811
Chicago/Turabian StyleSilva, Luís, Caroline Brunelli, Raphael Moreira, Sofia Barbosa, Manuela Fernandes, Andreia Miguel, Benvindo Maçãs, Constantino Valero, Manuel Patanita, Fernando Cebola Lidon, and et al. 2025. "Response of Nearby Sensors to Variable Doses of Nitrogen Fertilization in Winter Fodder Crops Under Mediterranean Climate" Sensors 25, no. 18: 5811. https://doi.org/10.3390/s25185811
APA StyleSilva, L., Brunelli, C., Moreira, R., Barbosa, S., Fernandes, M., Miguel, A., Maçãs, B., Valero, C., Patanita, M., Lidon, F. C., & Conceição, L. A. (2025). Response of Nearby Sensors to Variable Doses of Nitrogen Fertilization in Winter Fodder Crops Under Mediterranean Climate. Sensors, 25(18), 5811. https://doi.org/10.3390/s25185811