Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements
Abstract
1. Introduction
2. Phaseless Spherical Near-Field Measurements
3. Masks
3.1. Random Masks
3.1.1. Gaussian and Uniform Masks
3.1.2. Categorical Masks
3.2. -Rotations Masks
3.3. Probe-Based Masks
3.3.1. Random Probes
3.3.2. Patch Array Probes
4. Numerical Results
4.1. Random Masks
4.2. Probe-Based Masks
- The distance between AUT and probe should be small to enhance the probe effect. In the conducted investigations, a measurement radius satisfying has been shown to be appropriate.
- The probe’s mode truncation should be large enough so that the probe effect is not negligible.
- The focus should be on the design of FOPs as a lower oversampling is necessary than for HOPs.
- The measurement time is mainly driven by the number of masks and oversampling. First, the oversampling ratio determines the number of sampling points and thus the sampling scheme of each mask measurement. Secondly, for each AUT, multiple mask measurements given by the number of masks have to be performed.
- The calibration of patch arrays is not necessary as long as the mode spectrum is known for probe correction. It is only a concern if a specific, pre-simulated mask, is required.
- For probe-based masks, the probe has to be changed at each mask measurement. This can be implemented via an automatic feed switcher or feed carousel. For patch arrays probes, phase shifters and attenuators could be used to change automatically the elements weights. However, this requires a more complex probe antenna.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SNF | spherical near-field |
FF | far-field |
NF | near-field |
AUT | antenna under test |
SMCs | spherical mode coefficients |
PRCs | probe response constants |
EES | equivalent error signal |
SWE | spherical wave expansion |
CDPs | coded diffraction patterns |
FOP | first-order probe |
HOP | high-order probe |
SGH | standard gain horn |
BS | basis station |
References
- Hansen, J.E. Spherical Near-Field Antenna Measurements; Institution of Engineering and Technology: London, UK, 1988. [Google Scholar]
- Breinbjerg, O. Spherical near-field antenna measurements—The most accurate antenna measurement technique. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 1019–1020. [Google Scholar] [CrossRef]
- Smith, D.; Leach, M.P.; Elsdon, M.; Foti, S.J. Indirect Holographic Techniques for Determining Antenna Radiation Characteristics and Imaging Aperture Fields. IEEE Antennas Propag. Mag. 2007, 49, 54–67. [Google Scholar] [CrossRef]
- Laviada Martínez, J.; Arboleya-Arboleya, A.; Álvarez-López, Y.; García-González, C.; Las-Heras, F. Phaseless Antenna Diagnostics Based on Off-Axis Holography with Synthetic Reference Wave. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 43–46. [Google Scholar] [CrossRef]
- Arboleya, A.; Laviada, J.; Laurinaho, J.A.; Álvarez, Y.; Heras, F.L.; Räisänen, A.V. Phaseless Characterization of Broadband Antennas. IEEE Trans. Antennas Propag. 2016, 64, 484–495. [Google Scholar] [CrossRef]
- Candes, E.J.; Strohmer, T.; Voroninski, V. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming. Commun. Pure Appl. Math. 2013, 66, 1241–1274. [Google Scholar] [CrossRef]
- Candes, E.J.; Li, X.; Soltanolkotabi, M. Phase Retrieval via Wirtinger Flow: Theory and Algorithms. IEEE Trans. Inf. Theory 2015, 61, 1985–2007. [Google Scholar] [CrossRef]
- Rodríguez Varela, F.; Fernández Álvarez, J.; Galocha Iragüen, B.; Sierra Castañer, M.; Breinbjerg, O. Numerical and Experimental Investigation of Phaseless Spherical Near-Field Antenna Measurements. IEEE Trans. Antennas Propag. 2021, 69, 8830–8841. [Google Scholar] [CrossRef]
- Fernández Álvarez, J.; Mattes, M.; Breinbjerg, O. Phaseless Probe-Corrected Spherical Near-Field Antenna Measurements Using Two Scan Spheres. IEEE Trans. Antennas Propag. 2024, 72, 3696–3705. [Google Scholar] [CrossRef]
- Fuchs, B.; Mattes, M.; Rondineau, S.; Le Coq, L. Phaseless Near-Field Antenna Measurements From Two Surface Scans—Numerical and Experimental Investigations. IEEE Trans. Antennas Propag. 2020, 68, 2315–2322. [Google Scholar] [CrossRef]
- Fernández Álvarez, J.; Bjørstorp, J.M.; Breinbjerg, O. Spherical Phaseless Probe-Corrected Near-Field Measurements of the DTU-ESA VAST12 Reflector Antenna. In Proceedings of the 40th Annual Meeting and Symposium of the Antenna Measurement Techniques Association, Williamsburg, VA, USA, 4–9 November 2018; Volume 2018, pp. 216–221. [Google Scholar]
- Rodríguez Varela, F.; Galocha Iragüen, B.; Sierra Castañer, M.; Fernández Álvarez, J.; Mattes, M.; Breinbjerg, O. Combination of Spherical and Planar Scanning for Phaseless Near-Field Antenna Measurements. In Proceedings of the 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA, 6–11 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Guth, A.; Culotta-López, C.; Maly, J.; Rauhut, H.; Heberling, D. Polyhedral Sampling Structures for Phaseless Spherical Near-Field Antenna Measurements. In Proceedings of the 2020 Antenna Measurement Techniques Association Symposium (AMTA), Newport, RI, USA, 2–5 November 2020; pp. 1–6. [Google Scholar]
- Paulus, A.; Knapp, J.; Eibert, T.F. Phaseless Near-Field Far-Field Transformation Utilizing Combinations of Probe Signals. IEEE Trans. Antennas Propag. 2017, 65, 5492–5502. [Google Scholar] [CrossRef]
- Fernández Álvarez, J.; Mattes, M.; Breinbjerg, O. Phase Retrieval for Spherical Near-Field Measurements Using Two Antenna Positions. In Proceedings of the 2021 Antenna Measurement Techniques Association Symposium (AMTA), Daytona Beach, FL, USA, 24–29 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mézières, N.; Le Coq, L.; Fuchs, B. Spherical Phaseless Antenna Measurements Experimental Validation of a Two-Antenna-Positions Procedure. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 813–817. [Google Scholar] [CrossRef]
- Kornprobst, J.; Paulus, A.; Knapp, J.; Eibert, T.F. Phase Retrieval for Partially Coherent Observations. IEEE Trans. Signal Process. 2021, 69, 1394–1406. [Google Scholar] [CrossRef]
- Paulus, A.; Knapp, J.; Kornprobst, J.; Eibert, T.F. Reliable Linearized Phase Retrieval for Near-Field Antenna Measurements with Truncated Measurement Surfaces. IEEE Trans. Antennas Propag. 2022, 70, 7362–7367. [Google Scholar] [CrossRef]
- Knapp, J.; Paulus, A.; Kornprobst, J.; Siart, U.; Eibert, T.F. Multifrequency Phase Retrieval for Antenna Measurements. IEEE Trans. Antennas Propag. 2021, 69, 488–501. [Google Scholar] [CrossRef]
- Candès, E.J.; Eldar, Y.C.; Strohmer, T.; Voroninski, V. Phase Retrieval via Matrix Completion. SIAM J. Imaging Sci. 2013, 6, 199–225. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Soltanolkotabi, M. Phase Retrieval from Coded Diffraction Patterns. Appl. Comput. Harmon. Anal. 2015, 39, 277–299. [Google Scholar] [CrossRef]
- Guth, A.; Abdulsalaam, S.; Rauhut, H.; Heberling, D. Numerical Investigations on Phase Recovery from Phaseless Spherical Near-Field Antenna Measurements with Random Masks. In Proceedings of the 2024 Antenna Measurement Techniques Association Symposium (AMTA), Cincinnati, OH, USA, 27 October–1 November 2024; pp. 1–6. [Google Scholar]
- Guth, A.A.; Abdulsalaam, S.; Rauhut, H.; Heberling, D. Numerical Investigations on Phase Recovery from Phaseless Spherical Near-Field Antenna Measurements with Probe-Based Masks. In Proceedings of the 2025 19th IEEE European Conference on Antennas and Propagation (EuCAP), Stockholm, Sweden, 30 March–4 April 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Li, H.; Li, S. Phase Retrieval from Fourier Measurements with Masks. Inverse Probl. Imaging 2021, 15, 1051. [Google Scholar] [CrossRef]
- Gross, D.; Krahmer, F.; Kueng, R. Improved recovery guarantees for phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 2017, 42, 37–64. [Google Scholar] [CrossRef]
- Culotta-López, C.; Heberling, D. Fast Spherical Near-Field Measurements on Arbitrary Surfaces by Application of Pointwise Probe Correction to Compressed Sampling Schemes. In Proceedings of the 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA, 6–11 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Bangun, A.; Behboodi, A.; Mathar, R. Signal Recovery from Phaseless Measurements of Spherical Harmonics Expansion. In Proceedings of the 27th EUSIPCO 2019, A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Chandra, R.; Zhong, Z.; Hontz, J.; McCulloch, V.; Studer, C.; Goldstein, T. PhasePack: A phase retrieval library. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 1617–1621. [Google Scholar] [CrossRef]
AUT | Frequency (f) | Mode Truncation (N) | Number of Modes (J) | FF Radius at f () | Beam Tilt | Directivity |
---|---|---|---|---|---|---|
SGH | 27 | 1566 | 0 deg | 19 dBi | ||
BS | 31 | 2046 | 12 | 12 deg | 16 dBi | |
mmVAST | 160 | 51,840 | 69 | 0 deg | 33 dBi |
Array elements one-dimensional () | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
Mode truncation () at 60 GHz | 18 | 23 | 27 | 31 | 36 | 40 | 45 | 49 | 54 |
Mode truncation () at 2.4 GHz | 19 | 23 | 27 | 32 | 36 | 41 | 45 | 50 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guth, A.A.; Abdulsalaam, S.; Rauhut, H.; Heberling, D. Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements. Sensors 2025, 25, 5637. https://doi.org/10.3390/s25185637
Guth AA, Abdulsalaam S, Rauhut H, Heberling D. Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements. Sensors. 2025; 25(18):5637. https://doi.org/10.3390/s25185637
Chicago/Turabian StyleGuth, Adrien A., Sakirudeen Abdulsalaam, Holger Rauhut, and Dirk Heberling. 2025. "Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements" Sensors 25, no. 18: 5637. https://doi.org/10.3390/s25185637
APA StyleGuth, A. A., Abdulsalaam, S., Rauhut, H., & Heberling, D. (2025). Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements. Sensors, 25(18), 5637. https://doi.org/10.3390/s25185637