A Real-Time Diagnostic System Using a Long Short-Term Memory Model with Signal Reshaping Technology for Ship Propellers
Abstract
1. Introduction
2. Materials and Methods
2.1. Ship Propeller Sensing Platforms
2.2. Diagnosis and RUL Prediction Model
2.2.1. Health Index: RUL Value
2.2.2. Diagnosis and RUL Prediction Model Training
3. Results
3.1. Bearing Abnormal Frequency Experiment
3.2. Practical Validation of the Ship Propeller Diagnosis and RUL Prediction System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DNV GL. Maritime forecast to 2050. In Energy Transition Outlook; DNV GL: Høvik, Norway, 2018. [Google Scholar]
- Powering Change: Engine Retrofits Vital for Meeting Emission Targets. 2023. Available online: https://www.lr.org/en/knowledge/horizons/september-2023/powering-change-engine-retrofits-vital-for-meeting-emission-targets/ (accessed on 20 July 2025).
- Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Han, P.H.; Ellefsen, A.L.; Li, G.Y.; Æsøy, V.; Zhang, H.X. Fault Prognostics Using LSTM Networks: Application to Marine Diesel Engine. IEEE Sens. J. 2021, 21, 25986–25994. [Google Scholar] [CrossRef]
- Dai, X.W.; Gao, Z.W. From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis. IEEE Trans. Ind. Inform. 2013, 9, 2226–2238. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Ding, S.X.; Zi, Y.Y.; Wei, M.H. A Fault Detection and Health Monitoring Scheme for Ship Propulsion Systems Using SVM Technique. IEEE Access 2018, 6, 16207–16215. [Google Scholar] [CrossRef]
- Zhan, Y.; Shi, Z.; Liu, M. The Application of Support Vector Machines (SVM) to Fault Diagnosis of Marine Main Engine Cylinder Cover. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 3018–3022. [Google Scholar]
- Xie, T.; Li, Z.C.; Wang, T.Z.; Shi, M.; Wang, Y.D. An integration fault detection method using stator voltage for marine current turbines. Ocean Eng. 2021, 226, 108808. [Google Scholar] [CrossRef]
- De Stefano, C.; Ferrigno, L.; Fontanella, F.; Gerevini, L.; di Freca, A.S. A novel PCA-based approach for building on -board sensor classifiers for water contaminant detection. Pattern Recognit. Lett. 2020, 135, 375–381. [Google Scholar] [CrossRef]
- Yu, W.N.; Kim, I.Y.; Mechefske, C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [Google Scholar] [CrossRef]
- Sun, C.; Ma, M.; Zhao, Z.B.; Tian, S.H.; Yan, R.Q.; Chen, X.F. Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 2416–2425. [Google Scholar] [CrossRef]
- Gugulothu, N.; Tv, V.; Malhotra, P.; Vig, L.; Agarwal, P.; Shroff, G. Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv 2017, arXiv:1709.01073. [Google Scholar] [CrossRef]
- Fink, O.; Zio, E.; Weidmann, U. A Classification Framework for Predicting Components’ Remaining Useful Life Based on Discrete-Event Diagnostic Data. IEEE Trans. Reliab. 2015, 64, 1049–1056. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.Q.; Chen, Z.H.; Mao, K.Z.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R.; et al. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelic, G.; Murawski, L.; Recho, N.; Orovic, J. Marine Propulsion System Failures—A Review. J. Mar. Sci. Eng. 2020, 8, 662. [Google Scholar] [CrossRef]
- Vartdal, B.J.; Gjestland, T.; Arvidsen, T.I. Lateral propeller forces and their effects on shaft bearings. In Proceedings of the First International Symposium on Marine Propulsors, Trondheim, Norway, 22–24 June 2009; pp. 475–481. [Google Scholar]
- Velasco-Gallego, C.; Lazakis, I. Mar-RUL: A remaining useful life prediction approach for fault prognostics of marine machinery. Appl. Ocean. Res. 2023, 140, 103735. [Google Scholar] [CrossRef]
- Chen, Y.H.; Peng, G.L.; Zhu, Z.Y.; Li, S.J. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Appl. Soft. Comput. 2020, 86, 105919. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.G.; Li, N.P.; Li, N.B. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE Trans. Reliab. 2020, 69, 401–412. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Raffak, H.; Ghatous, H.; Mansouri, M.; Lakhouilii, A. A Data-Driven Predictive Maintenance Approach for Industry 4.0 Using LSTM with Cross-Validation and the IDAIC Framework. J. Eur. Des Systèmes Autom. 2025, 58, 21–29. [Google Scholar] [CrossRef]
- Elharnaf, I.; Achtaich, K.; Tetouani, S. Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms. Eng. Proc. 2025, 97, 45. [Google Scholar]
- Zhang, Y.; Tan, Y.; Hao, S.; Zeng, H.; Sang, P.; Gao, Y. Prediction and Analysis of Ship Engine Vibration Signals Based on Prompted Language Models. J. Appl. Sci. Eng. 2025, 29, 573–583. [Google Scholar]
Model Type | MSE ± Std Dev MSE | MAE ± Std Dev MAE |
---|---|---|
LSTM | 0.018 ± 0.011 | 0.039 ± 0.022 |
RNN | 0.236 ± 0.123 | 0.451 ± 0.123 |
Random forest | 0.052 ± 0.021 | 0.203 ± 0.075 |
SVR | 0.041 ± 0.002 | 0.197 ± 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.-C.; Chao, C.-C.; Huang, H.-J.; Wang, Y.-T.; Hsieh, K.-T. A Real-Time Diagnostic System Using a Long Short-Term Memory Model with Signal Reshaping Technology for Ship Propellers. Sensors 2025, 25, 5465. https://doi.org/10.3390/s25175465
Shen S-C, Chao C-C, Huang H-J, Wang Y-T, Hsieh K-T. A Real-Time Diagnostic System Using a Long Short-Term Memory Model with Signal Reshaping Technology for Ship Propellers. Sensors. 2025; 25(17):5465. https://doi.org/10.3390/s25175465
Chicago/Turabian StyleShen, Sheng-Chih, Chih-Chieh Chao, Hsin-Jung Huang, Yi-Ting Wang, and Kun-Tse Hsieh. 2025. "A Real-Time Diagnostic System Using a Long Short-Term Memory Model with Signal Reshaping Technology for Ship Propellers" Sensors 25, no. 17: 5465. https://doi.org/10.3390/s25175465
APA StyleShen, S.-C., Chao, C.-C., Huang, H.-J., Wang, Y.-T., & Hsieh, K.-T. (2025). A Real-Time Diagnostic System Using a Long Short-Term Memory Model with Signal Reshaping Technology for Ship Propellers. Sensors, 25(17), 5465. https://doi.org/10.3390/s25175465