Multimode Input Enhancement of Absorption Sensing of Methane in a Hollow Bottle Microresonator
Abstract
1. Introduction
2. Materials and Methods
2.1. Summary of Theoretical Model
2.2. Experimental Setup and Procedure
3. Experimental Results
3.1. Pure Methane Sensing
3.2. Trace Methane Sensing
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozzola, A.; Perotto, S.; Angelis, F.D. Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: A critical review. Analyst 2017, 142, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Steglich, P.; Rabus, D.G.; Sada, C.; Paul, M.; Weller, M.G.; Mai, C.; Mai, A. Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial. IEEE Sens. J. 2022, 22, 10089–10105. [Google Scholar] [CrossRef]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168–240. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.M.; Dhasmana, N.; Nic Chormaic, S. Hollow core, whispering gallery resonator sensors. Eur. Phys. J. Spec. Top. 2014, 223, 1917–1935. [Google Scholar] [CrossRef]
- Jiang, X.; Qavi, A.J.; Huang, S.H.; Yang, L. Whispering Gallery Sensors. Matter 2020, 3, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.T. Analysis of whispering-gallery microcavity-enhanced chemical absorption sensors. Opt. Express 2007, 15, 12959–12964. [Google Scholar] [CrossRef] [PubMed]
- Farca, G.; Shopova, S.I.; Rosenberger, A.T. Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. Opt. Express 2007, 15, 17443–17448. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.R.; Rosenberger, A.T. Enhancement of Dissipative Sensing in a Microresonator Using Multimode Input. Sensors 2022, 22, 6613. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.R.; Ke, L.; Sandoval, K.; Rosenberger, A.T. Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input. Sensors 2023, 23, 8700. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.T.; Haq, M.J.U. Design of Asymmetrically Tapered Fibers for Multimode Input to Enable Dissipative Sensing Enhancement in Microresonators. 2025; Under review. [Google Scholar]
- Li, B.; Liu, L.; Xu, L. Ultra-sensitive active whispering gallery mode sensor in an optofluidic microcapillary with Vernier effect of coupled modes. Opt. Express 2025, 7, 14668–14676. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Xing, E.; Li, J.; Rong, J.; Yue, H.; Zhang, Y.; Xing, G.; Zhou, Y.; Liu, W.; Tang, J.; et al. High-precision quasi-static sensing method based on WGM resonator self-modulation. Photonics Res. 2025, 5, 1375–1384. [Google Scholar] [CrossRef]
- Qin, P.; Kang, X.; Gan, X. Machine learning-enhanced on-chip micro-ring resonator platform for detection and recognition of low-concentration gas mixtures. Opt. Express 2025, 33, 24844–24854. [Google Scholar] [CrossRef] [PubMed]
- Angstenberger, S.; Floess, M.; Schmid, L.; Ruchka, P.; Steinle, T.; Giessen, H. Coherent control in quartz-enhanced photoacoustics: Fingerprinting a trace gas at ppm-level within seconds. Optica 2025, 12, 1–4. [Google Scholar] [CrossRef]
- Stoian, R.-I.; Bui, K.V.; Rosenberger, A.T. Silica hollow bottle resonators for use as whispering gallery mode based chemical sensors. J. Opt. 2015, 17, 125011. [Google Scholar] [CrossRef]
- Murugan, G.S.; Petrovich, M.N.; Jung, Y.; Wilkinson, J.S.; Zervas, M.N. Hollow-bottle optical microresonators. Opt. Express 2011, 19, 20773–20784. [Google Scholar] [CrossRef] [PubMed]
- Consani, C.; Dubois, F.; Auböck, G. Figures of merit for mid-IR evanescent-wave absorption sensors and their simulation by FEM methods. Opt. Express 2021, 29, 9723–9736. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The Hitran 2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Humphrey, M.J.; Dale, E.; Rosenberger, A.T.; Bandy, D.K. Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere. Opt. Commun. 2007, 271, 124–131. [Google Scholar] [CrossRef]
Taper Profile | λ (nm) | |||
---|---|---|---|---|
1 a | 1651 | 59.20 ± 7.47 | 65.31 ± 6.53 | 70.24 ± 1.30 |
1 | 1651 | 38.95 ± 4.37 | 45.27 ± 4.19 | 50.03 ± 0.67 |
1 | 1654 | 56.90 ± 6.59 | 57.81 ± 5.28 | 63.43 ± 1.07 |
1 | 1654 | 43.95 ± 4.64 | 46.70 ± 4.22 | 49.75 ± 0.67 |
2 | 1651 | 42.53 ± 2.68 | 41.31 ± 2.49 | 44.65 ± 0.54 |
2 | 1654 | 64.40 ± 6.32 | 67.83 ± 5.17 | 75.26 ± 1.49 |
2 a | 1654 | 56.88 ± 3.52 | 59.02 ± 2.72 | 62.66 ± 1.04 |
3 | 1651 | 76.89 ± 9.32 | 82.12 ± 7.53 | 88.10 ± 2.03 |
3 | 1654 | 70.08 ± 5.37 | 74.63 ± 6.38 | 78.78 ± 1.63 |
3 | 1654 | 42.60 ± 4.74 | 45.18 ± 3.68 | 48.72 ± 0.64 |
Taper Profile | λ (nm) | f (10−2) | Q (106) | Leff (cm) | |||
---|---|---|---|---|---|---|---|
1 | 1651 | 64.73 ± 7.72 | 70.63 ± 6.95 | 73.91 ± 1.44 | 3.61 | 3.90 | 166 |
1 | 1651 | 53.88 ± 6.53 | 56.83 ± 5.03 | 60.07 ± 0.96 | 3.98 | 3.50 | 137 |
1 b | 1654 | 51.87 ± 7.99 | 61.11 ± 8.38 | 64.66 ± 1.11 | 3.27 | 4.20 | 130 |
1 | 1654 | 44.47 ± 4.33 | 48.18 ± 4.31 | 51.18 ± 0.70 | 5.17 | 2.76 | 116 |
2 | 1651 | 52.80 ± 4.10 | 54.38 ± 3.14 | 58.33 ± 0.91 | 5.23 | 3.59 | 181 |
2 a | 1651 | 45.90 ± 3.42 | 48.31 ± 2.63 | 50.10 ± 0.67 | 6.14 | 2.17 | 112 |
2 | 1651 | 49.82 ± 4.97 | 50.90 ± 3.27 | 55.63 ± 0.83 | 4.26 | 6.01 | 233 |
2 | 1654 | 59.82 ± 4.89 | 60.33 ± 3.64 | 63.87 ± 1.08 | 7.40 | 2.27 | 183 |
2 | 1654 | 47.97 ± 2.55 | 48.38 ± 2.45 | 50.89 ± 0.70 | 8.11 | 1.58 | 113 |
3 | 1651 | 88.97 ± 11.10 | 93.85 ± 8.76 | 97.74 ± 2.48 | 4.08 | 2.99 | 198 |
3 | 1651 | 141.19 ± 19.79 | 144.82 ± 14.84 | 150.2 5 ± 5.79 | 3.68 | 2.88 | 273 |
3 a | 1651 | 84.31 ± 13.13 | 86.32 ± 9.75 | 91.77 ± 2.19 | 3.28 | 5.39 | 272 |
3 | 1654 | 51.64 ± 5.95 | 53.75 ± 4.56 | 55.89 ± 0.83 | 5.02 | 2.12 | 101 |
3 | 1654 | 62.73 ± 4.97 | 64.90 ± 5.30 | 67.65 ± 1.21 | 5.60 | 2.25 | 145 |
Taper Profile | Ω2 | ||
---|---|---|---|
1 | 2.50 × 10−2 | 51.74 ± 2.25 | 60.41 ± 0.36 |
2 | 3.47 × 10−2 | 52.52 ± 1.50 | 57.67 ± 0.34 |
3 | 3.00 × 10−2 | 77.30 ± 3.72 | 84.86 ± 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junaid Ul Haq, M.; Rosenberger, A.T. Multimode Input Enhancement of Absorption Sensing of Methane in a Hollow Bottle Microresonator. Sensors 2025, 25, 5458. https://doi.org/10.3390/s25175458
Junaid Ul Haq M, Rosenberger AT. Multimode Input Enhancement of Absorption Sensing of Methane in a Hollow Bottle Microresonator. Sensors. 2025; 25(17):5458. https://doi.org/10.3390/s25175458
Chicago/Turabian StyleJunaid Ul Haq, Mohmad, and A. T. Rosenberger. 2025. "Multimode Input Enhancement of Absorption Sensing of Methane in a Hollow Bottle Microresonator" Sensors 25, no. 17: 5458. https://doi.org/10.3390/s25175458
APA StyleJunaid Ul Haq, M., & Rosenberger, A. T. (2025). Multimode Input Enhancement of Absorption Sensing of Methane in a Hollow Bottle Microresonator. Sensors, 25(17), 5458. https://doi.org/10.3390/s25175458