A Feasibility Study of Automated Detection and Classification of Signals in Distributed Acoustic Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Distributed Acoustic Sensing (DAS)
Experimental Setup
2.2. DAS Signal Detection and Classification
2.2.1. DAS Change Detection
- The signal must have a temporal length that is at least twice the sampling rate to ensure an adequate temporal resolution for spectral analysis.
- The signal must include data from a minimum of 20 data channels to ensure there is enough data for analysis.
- For two bounding boxes to be merged into a single box, their distance must be within 4 times the spatial resolution after decimation (65.36 m) of each other, and the time difference between them must be less than or equal to half the sampling period.
- Padding is added to the final bounding box to ensure the inclusion of signal edges that might fall below the threshold. This is particularly useful for cases where periodic signatures may exist at low frequencies but with weaker signal strength.
2.2.2. DAS Signal Classification
3. Results
3.1. Object Detection
DAS Dataset
3.2. Object Classification
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasy Chan, Y.W.; Wang, H.P.; Xiang, P. Optical fiber sensors for monitoring railway infrastructures: A review towards smart concept. Symmetry 2021, 13, 2251. [Google Scholar] [CrossRef]
- Biondi, B.; Martin, E.; Cole, S.; Karrenbach, M.; Lindsey, N. Earthquakes analysis using data recorded by the Stanford DAS array. In Proceedings of the SEG International Exposition and Annual Meeting, SEG, Houston, TX, USA, 24–29 September 2017; pp. 2752–2756. [Google Scholar]
- Inaudi, D.; Glisic, B. Long-range pipeline monitoring by distributed fiber optic sensing. In Proceedings of the International Pipeline Conference, Calgary, AB, Canada, 25–29 September 2006; Volume 42630, pp. 763–772. [Google Scholar]
- Wang, C.; Olson, M.; Sherman, B.; Dorjkhand, N.; Mehr, J.; Singh, S. Reliable leak detection in pipelines using integrated DdTS temperature and DAS acoustic fiber-optic sensor. In Proceedings of the 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC, Canada, 22–25 October 2018; pp. 1–5. [Google Scholar]
- Owen, A.; Duckworth, G.; Worsley, J. OptaSense: Fibre optic distributed acoustic sensing for border monitoring. In Proceedings of the 2012 European Intelligence and Security Informatics Conference, Washington, DC, USA, 22–24 August 2012; pp. 362–364. [Google Scholar]
- Wiesmeyr, C.; Coronel, C.; Litzenberger, M.; Döller, H.J.; Schweiger, H.B.; Calbris, G. Distributed acoustic sensing for vehicle speed and traffic flow estimation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2596–2601. [Google Scholar]
- Turquet, A.; Wuestefeld, A.; Svendsen, G.K.; Nyhammer, F.K.; Nilsen, E.L.; Persson, A.P.O.; Refsum, V. Automated Snow Avalanche Monitoring and Alert System Using Distributed Acoustic Sensing in Norway. GeoHazards 2024, 5, 1326–1345. [Google Scholar] [CrossRef]
- Rivet, D.; de Cacqueray, B.; Sladen, A.; Roques, A.; Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 2021, 149, 2615–2627. [Google Scholar] [CrossRef]
- Bouffaut, L.; Taweesintananon, K.; Kriesell, H.J.; Rørstadbotnen, R.A.; Potter, J.R.; Landrø, M.; Johansen, S.E.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the Arctic. Front. Mar. Sci. 2022, 9, 901348. [Google Scholar] [CrossRef]
- Sørensen, K.A. Maritime Surveillance: Finding Dark Ships with Satellites and Artificial Intelligence. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2024. [Google Scholar]
- Waagaard, O.H.; Rønnekleiv, E.; Haukanes, A.; Stabo-Eeg, F.; Thingbø, D.; Forbord, S.; Aasen, S.E.; Brenne, J.K. Real-time low noise distributed acoustic sensing in 171 km low loss fiber. OSA Contin. 2021, 4, 688–701. [Google Scholar] [CrossRef]
- TV2 Nyheder. Kabel Mellem Letland og Sverige Beskadiget: Overblik over Sabotage og Sabotageforsøg i Østersøen. 2025. Available online: https://nyheder.tv2.dk/live/udland/2025-01-26-kabel-mellem-letland-og-sverige-beskadiget/overblik-over-sabotage-og-sabotageforsoeg-i-ostersoeen?entry=8a1eb10a-9510-4b2d-96fd-cae2830fb6ac (accessed on 1 February 2025).
- NRK Troms og Finnmark. This is What the Damaged Svalbard Cable Looked Like When it Came Up from the Depths. 2023. Available online: https://www.nrk.no/tromsogfinnmark/this-is-what-the-damaged-svalbard-cable-looked-like-when-it-came-up-from-the-depths-1.16895904 (accessed on 1 February 2025).
- News, H.N. Fiber-Optic Submarine Cable Near Faroe and Shetland Islands Damaged; Mediterranean Cables Also Cut. 2022. Available online: https://www.highnorthnews.com/en/fiber-optic-submarine-cable-near-faroe-and-shetland-islands-damaged-mediterranean-cables-also-cut (accessed on 24 January 2025).
- Wu, H.; Shang, C.; Zhu, K.; Lu, C. Vibration Detection in Distributed Acoustic Sensor With Threshold-Based Technique: A Statistical View and Analysis. J. Light. Technol. 2021, 39, 4082–4093. [Google Scholar] [CrossRef]
- Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors 2022, 22, 1033. [Google Scholar] [CrossRef] [PubMed]
- Alcatel Submarine Networks. Fiber Sensing (DAS). 2025. Available online: https://www.asn.com/fiber-sensing/ (accessed on 9 March 2025).
- Taweesintananon, K.; Landrø, M.; Brenne, J.K.; Haukanes, A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: A case study in the Trondheimsfjord, Norway. Geophysics 2021, 86, B303–B320. [Google Scholar] [CrossRef]
- Tróndheim, H.M. Ensuring Supply Reliability and Grid Stability in a 100% Renewable Electricity Sector in the Faroe Islands; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Marfurt, K.J.; Liu, J. Principal component spectral analysis. Geophysics 2009, 74, P35–P43. [Google Scholar] [CrossRef]
- Campello, R.J.; Moulavi, D.; Sander, J. Density-based clustering based on hierarchical density estimates. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- HDBSCAN Documentation. How HDBSCAN Works. 2025. Available online: https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html (accessed on 27 January 2025).
- sklearn.metrics.f1_score. 2025. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html (accessed on 3 August 2025).
- sklearn.metrics.davies_bouldin_score—scikit-learn 1.4.2 Documentation. 2024. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html (accessed on 8 July 2025).
- sklearn.metrics.silhouette_score—scikit-learn 1.4.2 Documentation. 2024. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html (accessed on 8 July 2025).
- sklearn.metrics.calinski_harabasz_score — scikit-learn 1.4.2 Documentation. 2024. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html (accessed on 8 July 2025).
- Han, S.; Huang, M.F.; Li, T.; Fang, J.; Jiang, Z.; Wang, T. Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks. J. Light. Technol. 2024, 42, 4167–4176. [Google Scholar] [CrossRef]
- Huang, W.; Chen, S.; Wu, Y.; Li, R.; Li, T.; Huang, Y.; Cao, X.; Li, Z. DAShip: A Large-Scale Annotated Dataset for Ship Detection Using Distributed Acoustic Sensing Technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4093–4107. [Google Scholar] [CrossRef]
Label | Count |
---|---|
AIS (Ship) | 41 |
Vehicle | 41 |
semi permanent Damage | 77 |
Earthquake | 5 |
Unlabeled | 1312 |
Total | 1476 |
Label | Cluster(s) | TP | FP | FN | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|---|
AIS | 4 | 37 | 0 | 2 | 1.000 | 0.949 | 0.974 |
Earthquake | 1 | 5 | 1 | 0 | 0.833 | 1.000 | 0.909 |
semi permanent damage | 5 | 65 | 0 | 12 | 1.000 | 0.844 | 0.915 |
Vehicle | 6, 7 | 36 | 0 | 5 | 1.000 | 0.878 | 0.935 |
Drop (%) | Clusters | Davies–Bouldin | Silhouette | Calinski–Harabasz |
---|---|---|---|---|
0 | 7 | 0.828 | 0.124 | 189.8 |
10 | 7 | 0.833 | 0.131 | 189.2 |
20 | 3 | 1.627 | −0.047 | 119.8 |
30 | 3 | 1.587 | −0.047 | 120.1 |
40 | 3 | 1.616 | −0.039 | 119.6 |
50 | 4 | 1.176 | 0.063 | 208.8 |
60 | 3 | 1.808 | −0.054 | 110.4 |
70 | 4 | 1.060 | 0.078 | 217.5 |
80 | 4 | 1.082 | 0.073 | 203.1 |
90 | 5 | 1.018 | 0.009 | 146.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, H.B.; Heiselberg, P.; Heiselberg, H.; Simonsen, A.; Sørensen, K.A. A Feasibility Study of Automated Detection and Classification of Signals in Distributed Acoustic Sensing. Sensors 2025, 25, 5445. https://doi.org/10.3390/s25175445
Pedersen HB, Heiselberg P, Heiselberg H, Simonsen A, Sørensen KA. A Feasibility Study of Automated Detection and Classification of Signals in Distributed Acoustic Sensing. Sensors. 2025; 25(17):5445. https://doi.org/10.3390/s25175445
Chicago/Turabian StylePedersen, Hasse B., Peder Heiselberg, Henning Heiselberg, Arnhold Simonsen, and Kristian Aalling Sørensen. 2025. "A Feasibility Study of Automated Detection and Classification of Signals in Distributed Acoustic Sensing" Sensors 25, no. 17: 5445. https://doi.org/10.3390/s25175445
APA StylePedersen, H. B., Heiselberg, P., Heiselberg, H., Simonsen, A., & Sørensen, K. A. (2025). A Feasibility Study of Automated Detection and Classification of Signals in Distributed Acoustic Sensing. Sensors, 25(17), 5445. https://doi.org/10.3390/s25175445