Intelligent Monitoring and Trend Analysis of Surface Soil Organic Carbon in the Black Soil Region Using Multi-Satellite and Field Sampling: A Case Study from Northeast China
Abstract
Highlights
- Multi-source satellite data (Landsat-9 and GF-1) were synergistically used through an XGBoost-RFECV framework (R2 = 0.9130 and RMSE = 0.3834%).
- Full-coverage SOC mapping complemented site-specific monitoring, revealing parent material (correlation coefficient = 0.38) as the dominant control.
- The integrated multi-source remote sensing method offers a practical reference for high-precision, detailed spatiotemporal SOC monitoring in agricultural watersheds.
- Identifying parent material as the key control factor provides a case reference for developing soil carbon sequestration strategies and sustainable land management in similar regions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Satellite Retrievals
2.2.2. Soil Sample Collection
2.2.3. Geographic Covariates
2.3. RF-RFECV Spectral Band Extraction
2.4. Model Development for SOC Content
2.4.1. MLR
2.4.2. PLSR
2.4.3. RF
2.4.4. XGBoost
2.5. Predictive Performance Evaluation
2.6. Trend of Change
3. Results
3.1. Model Performance Evaluation
3.1.1. Selection of Key Spectral Bands
3.1.2. SOC Estimation Models’ Performance
3.2. Spatial and Temporal Distribution of SOC
3.3. Trends in SOC Changes
3.4. Factors Influencing Changes in SOC
4. Discussion
4.1. Comparisons of Feature Band Selection Methods
4.2. Comparisons of Prediction Performance Between Multi-Source Data Fusion and Single-Sensor-Image Model
4.3. Comparisons of Slope Analysis and Difference Analysis for Changes in SOC
4.4. Analysis of Key Factors Influencing SOC
5. Conclusions
- (1)
- The integration of Landsat-9 and GF-1 multi-source remote sensing data effectively addressed the limitations associated with single-source data, and the R2 value increased by 10%. The XGBoost model demonstrated superior performance in estimating SOC content in black soil (R2 = 0.9130; RMSE = 0.3834%).
- (2)
- Based on the optimal model, an assessment of SOC content for the period 2020–2024 was conducted. The average value of SOC in the Tongken River Basin exhibited an initial increase followed by a decrease. From a spatial distribution perspective, the SOC content in the northeastern hilly region exhibited a marked increasing trend.
- (3)
- In small watersheds, the primary factors influencing the accumulation and variation in SOC are the soil parent material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Xing, Q.; Tong, Y.; Wang, Z.; Li, B. Establish governance systems for securing black soils in China based on a new law. Soil Secur. 2023, 13, 100112. [Google Scholar] [CrossRef]
- Hag Husein, H.; Bumler, R.; Lucke, B.; Sahwan, W. Black Soils in the Eastern Mediterranean: Genesis and Properties. Geographies 2024, 4, 168–181. [Google Scholar] [CrossRef]
- FAO. Global Status of Black Soils 2023. Available online: https://www.fao.org/global-soil-partnership/GBSmap/fr (accessed on 24 November 2023).
- Bao, Y.; Meng, X.; Ustin, S.; Wang, X.; Zhang, X.; Liu, H.; Tang, H. Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies. Catena 2020, 195, 104703. [Google Scholar] [CrossRef]
- Saha, S.K.; Tiwari, S.K.; Kumar, S. Integrated Use of Hyperspectral Remote Sensing and Geostatistics in Spatial Prediction of Soil Organic Carbon Content. J. Indian Soc. Remote Sens. 2021, 50, 129–141. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Borůvka, L. Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives. Crit. Rev. Environ. Sci. Technol. 2018, 48, 243–278. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, H.; Deng, O.; Deng, L. Spatial prediction of soil organic carbon based on RS and GIS in West River Valley. Soils Fert. Sci. China 2016, 4, 32–38. [Google Scholar]
- Wang, C.; Gao, B.; Yang, K.; Wang, Y.; Sukhbaatar, C.; Yin, Y.; Feng, Q.; Yao, X.; Zhang, Z.; Yang, J. Inversion of soil organic carbon content based on the two-point machine learning method. Sci. Total Environ. 2024, 943, 173608. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Cao, L.; Li, D.; Chen, G.; Han, Y. Inversion of Soil Organic Matter Content Based on Improved Convolutional Neural Network. Sensors 2022, 22, 7777. [Google Scholar] [CrossRef]
- Saygn, F.; Aksoy, H.; Alaboz, P.; Dengiz, O. Different approaches to estimating soil properties for digital soil map integrated with machine learning and remote sensing techniques in a sub-humid ecosystem. Environ. Monit. Assess. 2023, 195, 1061. [Google Scholar] [CrossRef]
- Zhang, Y.; Kou, C.; Liu, M.; Man, W.; Li, F.; Lu, C.; Song, J.; Song, T.; Zhang, Q.; Li, X. Estimation of Coastal Wetland Soil Organic Carbon Content in Western Bohai Bay Using Remote Sensing, Climate, and Topographic Data. Remote Sens. 2023, 15, 4241. [Google Scholar] [CrossRef]
- Hu, J.; Tang, Y.; Yan, J.; Zhang, J.; Zhao, Y.; Chen, Z. Improving model performance in mapping black-soil resource with machine learning methods and multispectral features. Sci. Rep. 2025, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yang, M.; Tang, X.; Tang, X.; Xia, Y.; Yang, Z.; Li, W. Inversion of soil organic carbon content in irrigation area of Central Yunnan Plateau based on GF-5 hyperspectral images. J. South. Agric. 2025, 56, 124–134. [Google Scholar] [CrossRef]
- Wei, Y. High-Resolution Digital Mapping of Soil Organic Carbon at Small Scale Using Microtopography Classification and Multi-Source Remote Sensing. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2022. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kgel-Knabner, I.; Lehmann, J.; Manning, D.A.C. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Sha, J.; Ouyang, J.; Fan, Z. Soil Organic Matter (SOM) Mapping in Subtropical Coastal Mountainous Areas Using Multi-Temporal Remote Sensing and the FOI-XGB Model. Remote Sens. 2025, 17, 2547. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; Mccorkel, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
- Su, Q.; Lv, J.; Fan, J.; Zeng, W.; Pan, R.; Liao, Y.; Song, Y.; Zhao, C.; Qin, Z.; Defourny, P. Remote Sensing-Based Classification of Winter Irrigation Fields Using the Random Forest Algorithm and GF-1 Data: A Case Study of Jinzhong Basin, North China. Remote Sens. 2023, 15, 4599. [Google Scholar] [CrossRef]
- Zeng, W.; Su, Q.; Fan, J.; Pan, R.; Liao, Y.; Song, Y. Crop Classification Based on the Fusion of GF-1 and Landsat 9 Satellite Images. J. Taiyuan Univ. Technol. 2024, 1–11. [Google Scholar]
- Shi, Z.; Miao, X. The Tongken River Health Assessment Study. Heilongjiang Hydraul. Sci. Technol. 2024, 52, 149–152. [Google Scholar]
- Wang, J.; Zuo, L.; Li, Z.; Mu, H.; Zhou, P.; Yang, J.; Zhao, Y.; Qin, K. A detection method of trace metal elements in black soil based on hyperspectral technology:Geological implications. J. Geomech. 2021, 27, 418–429. [Google Scholar] [CrossRef]
- Hao, X. A Study on the Evaluation of Happiness Rivers in Tongken River Based on TOPSIS Method. Master’s Thesis, Heilongjiang University, Harbin, China, 2024. [Google Scholar]
- Ge, Y. Hydrological Characteristics of the Tongken River Basin. Heilongjiang Sci. Technol. Water Conserv. 2011, 39, 218. [Google Scholar]
- Vestergaard, R.-J.; Vasava, H.B.; Aspinall, D.; Chen, S.; Gillespie, A.; Adamchuk, V.; Biswas, A. Evaluation of Optimized Preprocessing and Modeling Algorithms for Prediction of Soil Properties Using VIS-NIR Spectroscopy. Sensors 2021, 21, 6745. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Ma, X.; Ge, X. Potential of Hyperspectral Data Combined With Optimal Band Combination Algorithm for Estimating Soil Organic Carbon Content in Lakeside Oasis. Land Degrad. Dev. 2024, 35, 5874–5885. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. A rapid and accurate method for estimating organic carbon in soil. Proc. Indiana Acad. Sci. 1975, 84, 456–462. [Google Scholar]
- Rossel, R.A.V.; Lee, J.; Behrens, T.; Luo, Z.; Baldock, J.; Richards, A. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 2019, 12, 547–552. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data. 2022, 9, 176. Available online: https://www.nature.com/articles/s41597-022-01284-8/ (accessed on 22 May 2024). [CrossRef]
- Li, X.; Yuan, X.; Gan, S.; Yang, M.; Gong, W.; Peng, X. Modelling Wetland Vegetation ldentification at Multiple Variationa Mode Decomposition. Spectrosc. Spectr. Anal. 2025, 45, 601–607. [Google Scholar]
- Wang, J.; Liu, T.; Zhang, J.; Yuan, H.; Acquah, G.E. Spectral variable selection for estimation of soil organic carbon content using mid-infrared spectroscopy. Eur. J. Soil Sci. 2022, 73, e13267. [Google Scholar] [CrossRef]
- Yang, X.; Sun, S. Cause Analysis and Treatment of Valve Side Bushing Fault of Converter Transformer. Electr. Eng. 2020, 3, 112–113. [Google Scholar] [CrossRef]
- Han, Y.; Hou, Z. Analysis of Carbon Emission lmpact Factors and Peak Scenario Simulation for Resource-based Cities in China Based on RF-RFECV Feature Selection and BO-CNN-BiLSTM-attention. Environ. Sci. 2025, 1–26. [Google Scholar] [CrossRef]
- Bouasria, A.; Ibno Namr, K.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks. Geo-Spat. Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
- Herman, W. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach. J. Appl. Probab. 1975, 12, 117–142. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, Y.; Zhu, W.; Lee, D.K. VIS-NIR spectroscopy and environmental factors coupled with PLSR models to predict soil organic carbon and nitrogen. Int. Soil Water Conserv. Res. 2024, 12, 844–854. [Google Scholar] [CrossRef]
- Song, M.; Huang, J.; Zhao, D.; Mu, Y. Trends and drivers of dissolved organic carbon in major Arctic rivers. Ecol. Indic. 2025, 170, 113081. [Google Scholar] [CrossRef]
- Statistics, L.B.; Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. Int. Sci. Eng. J. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Shi, H.; Ma, H.; Wang, Y.; Li, Y. Inversion of Water Quality Parameters Using UAV Multispectral Dataand the SR-XGBoost Model: A Case Study of Farmland Drainage Ditchesin an Arid lrrigation Area. China Environ. Sci. 2025, 1–15. [Google Scholar] [CrossRef]
- Bai, Z.; Xie, M.; Hu, B.; Luo, D.; Wan, C.; Peng, J.; Shi, Z. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors 2022, 22, 6124. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, L.; Liu, X.; Huang, Y.; Chen, P.; Li, H. Hyperspectral Inversion of Soil Organic Matter Content Based on Continuous Wavelet Transform, SHAP, and XGBoost. Environ. Sci. 2024, 45, 2280–2291. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Dematte, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, H.; Zhu, Q.H.; Wang, X.F.; Zhang, Y.Z.; Yu, X.C.; Peng, X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 2013, 130, 42–51. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Deng, Y.; Yi, C. Effects of Conservation Tillage on Agricultural Green Total Factor Productivity in Black Soil Region: Evidence from Heilongjiang Province, China. Land 2024, 13, 1212. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Z.; Zhuo, Z.; Ma, Y.; Shi, Z.; Chen, S. Prediction of soil organic carbon fractions in tropical cropland using a regional visible and near-infrared spectral library and machine learning. Soil Tillage Res. 2025, 245, 106297. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, Y.; Zhu, F.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging. Sensors 2022, 22, 8997. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Zhu, J.; Wang, J.; Pan, X.; Gao, T. Black Soil Protection and Utilization Based on Harmonization of Mountain-River-Forest-Farmland-Lake-Grassland-Sandy Land Ecosystems and Strategic Construction of Ecological Barrier. Bull. Chin. Acad. Sci. 2021, 036, 1155–1164. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Qian, T.; Wei, Y.; Wang, M.; Guo, X.; Luo, Z. Distinct controlling factors on the distribution of soil organic carbon stocks at global and biomes scales. Acta Ecol. Sin. 2024, 44, 3382–3396. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Chen, L.; Kuzyakov, Y.; Wang, R.; Zhang, H.; Han, X.; Jiang, Y.; Sun, O.J. Global pattern of organic carbon pools in forest soils. Glob. Change Biol. 2024, 30, e17386. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, S.; Guo, X.; Xiao, L.; Yang, Y.; Luo, Y.; Mishra, U.; Luo, Z. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 2024, 14, 21. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Liess, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2018, 333, 149–162. [Google Scholar] [CrossRef]
Year | Landsat-9 OLI-/TIRS L2 | GF-1 WFV |
---|---|---|
2020 | 2020.04.10 | 2020.04.15, 2020.05.06 |
2021 | 2021.03.28 | 2021.04.07 |
2022 | 2022.03.23, 2022.03.21 | 2022.04.02, 2022.04.15 |
2023 | 2023.04.27, 2023.04.04 | 2023.05.17, 2023.05.18 |
2024 | 2024.04.29, 2024.05.07 | 2024.05.09 |
Year | Number | Maximum (%) | Minimum (%) | Average (%) | |
---|---|---|---|---|---|
2022 | 60 | 3.80 | 0.65 | 1.98 | |
2023 | Training set | 143 | 8.42 | 1.4 | 3.26 |
Testing set | 61 | 8.20 | 1.66 | 3.04 | |
2024 | 56 | 3.03 | 1.11 | 1.9 |
Indicators | Data Content | Resolution (m) | Format | Source | |
---|---|---|---|---|---|
Topography and geology | Elevation | Elevation | 30 | GeoTiff | Geospatial Data Cloud (https://www.gscloud.cn/home accessed on 20 March 2024) |
Distribution of soil-forming parent | Soil-forming parent | —— | Shapefile | National Earth System Science Data Center (http://soil.geodata.cn/ accessed on 20 February 2024) | |
Meteorological factors | Mean annual temperature change Slope | Mean annual temperature | 1000 | GeoTiff | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/home accessed on 14 February 2024) |
Mean annual precipitation change Slope | Mean annual rainfall | 1000 | GeoTiff | ||
Soil characteristics | Surface soil moisture change Slope | Surface soil moisture | 1000 | GeoTiff | |
Distribution of soil type | Soil type | —— | Shapefile | National Earth System Science Data Center (http://soil.geodata.cn/ accessed on 22 February 2024) | |
Ecological environment | Vegetation index change Slope | Normalized difference vegetation index | 250 | GeoTiff | Resource and Environmental Science Data Platform (https://www.resdc.cn/ accessed on 5 March 2024) |
Human activities | Land use distribution | Land use data | —— | Shapefile | The data center of the Institute of Resources and Environment, Chinese Academy of Sciences (https://www.resdc.cn/ accessed on 20 May 2024) |
Annual terrestrial Human Footprint change Slope | Annual terrestrial Human Footprint | 1000 | GeoTiff | Scientific Data [31] (https://www.nature.com/sdata/ accessed on 22 May 2024) | |
Population density change Slope | LandScan Global | 1000 | GeoTiff | Oak Ridge National Laboratory (https://landscan.ornl.gov/about accessed on 23 May 2024)) |
Mathematical Transformation | GF-1 | Landsat-9 |
---|---|---|
R | B1, B2, B4 | B1, B4 |
1/R | NULL | B1 |
logR | NULL | B1, B2 |
log(1/R) | B2 | B7 |
R′ | NULL | NULL |
R″ | NULL | B4 |
d(log(1/R))/dλ | B2, B3 | B6, B7 |
CR | NULL | NULL |
Model | Training Set | Testing Set | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE (%) | MAE (%) | Bias (%) | R2 | RMSE (%) | MAE (%) | Bias (%) | |
MLR | 0.3603 | 1.0042 | 0.7181 | 0.0001 | 0.2238 | 1.2937 | 0.7333 | −0.0950 |
PLSR | 0.4356 | 0.9985 | 0.6513 | 0.0001 | 0.3411 | 1.0552 | 0.7841 | −0.0151 |
RF | 0.7206 | 0.6271 | 0.2669 | 0.1449 | 0.5951 | 0.6312 | 0.4574 | 0.2607 |
XGBoost | 0.9130 | 0.3834 | 0.1087 | −0.0005 | 0.7869 | 0.6134 | 0.3233 | 0.2312 |
XGBoost (2022) | R2 = 0.8253 | RMSE = 0.2868% | MAE = 0.2465% | Bias = 0.2069% | ||||
XGBoost (2024) | R2 = 0.7702 | RMSE = 0.4807% | MAE = 0.1118% | Bias = 0.1003% |
Time | SOC (%) | ||
---|---|---|---|
Maximum | Minimum | Average | |
2020 | 5.3641 | 0.6247 | 3.3776 |
2021 | 5.7928 | 1.4402 | 4.4945 |
2022 | 5.3029 | 0.6303 | 4.0124 |
2023 | 8.5500 | 1.3923 | 3.3193 |
2024 | 6.2263 | 1.1393 | 4.1469 |
Elevation | Soil-Forming Parent | Soil Type | Land Use Distribution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.11 ** | 0.38 ** | −0.051 ** | 0.079 ** | 0.18 ** | 0.044 ** | −0.02 | 0.25 ** | 0.038 ** | −0.044 ** | |
Elevation | 0.11 ** | 1 | 0.13 ** | 0.097 | 0.048 ** | 0.11 ** | 0.47 ** | −0.084 ** | 0.21 ** | −0.024 * | −0.14 ** |
Soil-forming parent | 0.38 ** | 0.13 ** | 1 | 0.11 ** | 0.36 ** | 0.57 ** | 0.18 ** | 0.30 ** | 0.65 ** | 0.29 ** | 0.17 ** |
−0.051 ** | 0.097 ** | 0.11 ** | 1 | −0.60 ** | −0.035 * | −0.13 ** | 0.013 | 0.099 ** | 2.90 × 10−4 | −0.0035 | |
0.079 ** | 0.048 ** | 0.36 ** | −0.60 ** | 1 | 0.27 ** | 0.43 ** | −0.096 ** | 0.30 ** | 0.016 | −0.069 ** | |
Soil type | 0.18 ** | 0.11 ** | 0.57 ** | −0.035 * | 0.27 ** | 1 | −0.08 ** | 0.10 ** | 0.53 ** | 0.10 ** | 0.015 |
0.044 ** | 0.47 ** | 0.18 ** | −0.13 ** | 0.43 ** | −0.08 ** | 1 | −0.12 ** | 0.17 ** | −0.0021 | −0.12 ** | |
−0.020 | −0.084 ** | 0.30 ** | 0.013 | −0.096 ** | 0.10 ** | −0.12 ** | 1 | 0.25 ** | 0.011 | 0.0093 | |
Land use distribution | 0.25 ** | 0.21 ** | 0.65 ** | 0.099 ** | 0.30 ** | 0.53 ** | 0.17 ** | 0.25 ** | 1 | 0.19 ** | 0.068 ** |
0.038 ** | −0.024 * | 0.29 ** | 2.9 × 10−4 | 0.016 | 0.10 ** | −0.0021 | 0.011 | 0.19 ** | 1 | −0.039 ** | |
−0.044 ** | −0.14 ** | 0.17 ** | −0.0035 | −0.069 ** | 0.015 | −0.12 ** | 0.0093 | 0.068 ** | −0.039 ** | 1 | |
Partial correlation coefficient | 1 | 0.184 | 0.57 | −0.026 | 0.051 | −0.063 | −0.043 | 0.011 | 0.07 | 0.005 | 0.008 |
Significance (P) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.142 | 0.197 | 0.470 | 0.272 |
PCA | LASSO | ||
---|---|---|---|
Number | 6 | 10 | |
Training set | R2 | 0.5894 | 0.7037 |
RMSE(%) | 0.6156 | 0.6430 | |
MAE(%) | 0.4783 | 0.3113 | |
Bias(%) | −0.3593 | 0.2113 | |
Testing set | R2 | 0.3066 | 0.6610 |
RMSE(%) | 1.9708 | 0.6889 | |
MAE(%) | 0.6409 | 0.3131 | |
Bias(%) | −0.4972 | 0.3131 |
Satellite Type | All Bands | RF-RFECV Spectral Band Extraction | ||||||
---|---|---|---|---|---|---|---|---|
Training Set | Testing Set | Training Set | Testing Set | |||||
R2 | RMSR (%) | R2 | RMSR (%) | R2 | RMSR (%) | R2 | RMSR (%) | |
Landsat | 0.8129 | 0.4814 | 0.4881 | 0.9750 | 0.8297 | 0.4452 | 0.5032 | 0.6009 |
GF-1 | 0.8288 | 0.4641 | 0.4244 | 0.9908 | 0.8300 | 0.4046 | 0.5018 | 0.6028 |
Landsat-9 and GF-1 | 0.9123 | 0.3828 | 0.5329 | 0.6048 | 0.9130 | 0.3834 | 0.7869 | 0.6134 |
2020 | 2021 | 2022 | 2023 | 2024 | Slope | Difference | |
---|---|---|---|---|---|---|---|
A | 3.3712 | 5.0561 | 4.1556 | 3.1128 | 5.2314 | 0.1810 | 2.9531 |
B | 3.2902 | 4.5168 | 3.8194 | 3.4214 | 5.3673 | 0.3199 | 2.8868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Dai, H.; Liu, K.; Tang, Y. Intelligent Monitoring and Trend Analysis of Surface Soil Organic Carbon in the Black Soil Region Using Multi-Satellite and Field Sampling: A Case Study from Northeast China. Sensors 2025, 25, 5442. https://doi.org/10.3390/s25175442
Chen C, Dai H, Liu K, Tang Y. Intelligent Monitoring and Trend Analysis of Surface Soil Organic Carbon in the Black Soil Region Using Multi-Satellite and Field Sampling: A Case Study from Northeast China. Sensors. 2025; 25(17):5442. https://doi.org/10.3390/s25175442
Chicago/Turabian StyleChen, Chaoqun, Huimin Dai, Kai Liu, and Yulei Tang. 2025. "Intelligent Monitoring and Trend Analysis of Surface Soil Organic Carbon in the Black Soil Region Using Multi-Satellite and Field Sampling: A Case Study from Northeast China" Sensors 25, no. 17: 5442. https://doi.org/10.3390/s25175442
APA StyleChen, C., Dai, H., Liu, K., & Tang, Y. (2025). Intelligent Monitoring and Trend Analysis of Surface Soil Organic Carbon in the Black Soil Region Using Multi-Satellite and Field Sampling: A Case Study from Northeast China. Sensors, 25(17), 5442. https://doi.org/10.3390/s25175442