Electromyographic and Kinematic Analysis of the Upper Limb During Drinking and Eating Using a Wearable Device Prototype
Abstract
1. Introduction
2. Materials and Methods
2.1. Wearable Device Prototype and Interface
2.2. Subject Recruitment
2.3. Experimental Setup and Protocol
2.4. Data Analysis
3. Results
3.1. ADL of Drinking
3.2. ADL of Eating
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okita, S.; de Lucena, D.S.; Reinkensmeyer, D.J. Movement diversity and complexity increase as arm impairment decreases after stroke: Quality of movement experience as a possible target for wearable feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.S.M.; Pereira, N.D.; Gianlorenço, A.C.L.; Camargo, P.R. The evaluation of non-use of the upper limb in chronic hemiparesis is influenced by the level of motor impairment and difficulty of the activities-proposal of a new version of the Motor Activity Log. Physiother. Theory Pract. 2019, 35, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, T.; Fornia, L.; Bowman, T.; Marzegan, A.; Caronni, A.; Turolla, A.; Jonsdottir, J. A Randomized Controlled Trial on the Effects Induced by Robot-Assisted and Usual-Care Rehabilitation on Upper Limb Muscle Synergies in Post-Stroke Subjects. Sci. Rep. 2021, 11, 5323. [Google Scholar] [CrossRef]
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef]
- Foundas, A.L.; Macauley, B.L.; Rayme, A.M.; Maher, L.M.; Heilman, K.M.; Rothi, L.J.G. Ecological implications of limb apraxia: Evidence from mealtime behavior. J. Int. Neuropsychol. Soc. 1995, 1, 62–66. [Google Scholar] [CrossRef]
- Bieńkiewicz, M.; Brandi, M.L.; Goldenberg, G.; Hughes, C.; Hermsdörfer, J. The tool in the brain: Apraxia in ADL. Behavioral and neurological correlates of apraxia in daily living. Front. Psychol. 2014, 5, 353. [Google Scholar] [CrossRef]
- Humphreys, G.W.; Forde, E.M.E. Disordered action schema and action disorganisation syndrome. Cogn. Neuropsychol. 1998, 15, 771–811. [Google Scholar]
- Ellis, M.D.; Holubar, B.; Acosta, A.M.; Beer, R.F.; Dewald, J.P. Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve. 2005, 32, 170–178. [Google Scholar] [CrossRef]
- Liu, W.; Waller, S.M.; Kepple, T.M.; Whitall, J. Compensatory arm reaching strategies after stroke: Induced position analysis. J. Rehabil. Res. Dev. 2013, 50, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Pain, L.M.; Ross, B.; Denyse, R.; Agur, A.M. Effect of trunk-restraint training on function and compensatory trunk, shoulder and elbow patterns during post-stroke reach: A systematic review. Disabil. Rehabil. 2015, 37, 553–562. [Google Scholar] [CrossRef]
- Alaverdashvili, M.; Foroud, A. “Learned baduse” limits recovery of skilled reaching for food after forelimb motor cortex stroke in rats: A new analysis of the effect of gestures on success. Behav. Brain Res. 2008, 188, 281–290. [Google Scholar] [CrossRef]
- Cai, S.; Li, G.; Zhang, X.; Huang, S.; Zhetng, H.; Ma, K.; Xie, L. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms. J. Neuroeng. Rehabil. 2019, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair. 2009, 23, 313–319. [Google Scholar] [CrossRef]
- Murphy, M.A.; Sunnerhagen, K.S.; Johnels, B.; Willén, C. Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: A pilot study. J. Neuroeng. Rehabil. 2006, 3, 18. [Google Scholar] [CrossRef]
- Stinear, C.M.; Lang, C.E.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 19, 348–360. [Google Scholar] [CrossRef]
- Kristoffersson, A.; Lindén, M.A. Systematic Review of Wearable Sensors for Monitoring Physical Activity. Sensors 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Jalloul, N.; Poree, F.; Viardot, G.; Hostis, P.; Carrault, G. Activity Recognition Using Complex Network Analysis. IEEE J. Biomed. Health Inform. 2018, 22, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Vaughan-Graham, J.; Cott, C.; Wright, F.V. The Bobath (NDT) concept in adult neurological rehabilitation: What is the state of the knowledge? A scoping review. Part I: Conceptual perspectives. Disabil. Rehabil. 2014, 37, 1793–1807. [Google Scholar] [CrossRef]
- Valevicius, A.M.; Boser, Q.A.; Lavoie, E.B.; Chapman, C.S.; Pilarski, P.M.; Hebert, J.S.; Vette, A.H. Characterization of normative angular joint kinematics during two functional upper limb tasks. Gait Posture 2019, 69, 176–186. [Google Scholar] [CrossRef]
- Santos, P.; Quaresma, C.; Garcia, I.; Quintão, C. Neuromotor Evaluation of the Upper Limb During Activities of Daily Living: A Pilot Study. In Technological Innovation for Digitalization and Virtualization DoCEIS; Camarinha-Matos, L.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Held, J.P.; Klaassen, B.; Eenhoorn, A.; van Beijnum, B.F.; Buurke, J.H.; Veltink, P.H.; Luft, A.R. Inertial Sensor Measurements of Upper-Limb Kinematics in Stroke Patients in Clinic and Home Environment. Front. Bioeng. Biotechnol. 2018, 6, 27. [Google Scholar] [CrossRef]
- Murph, M.A.; Willén, C.; Sunnerhagen, K.S. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil. Neural Repair 2011, 25, 71–80. [Google Scholar] [CrossRef]
- Murph, M.A.; Murphy, S.; Persson, H.C.; Bergström, U.B.; Sunnerhagen, K.S. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People With and Without Upper-extremity Impairments. J. Vis. Exp. 2018, 133, 57228. [Google Scholar] [CrossRef]
- Kim, K.; Song, W.; Lee, J.; Lee, H.; Park, D.; Ko, B.; Kim, J. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects. Clin. Biomech. 2014, 29, 248–256. [Google Scholar] [CrossRef] [PubMed]
- de los Reyes-Guzmán, A.; Gil-Agudo, A.; Peñasco-Martín, B.; Solís-Mozos, M.; del Ama-Espinosa, A.; Pérez-Rizo, E. Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury. J. Neuroeng. Rehabil. 2010, 7, 41. [Google Scholar] [CrossRef]
- Santos, G.L.; Russo, T.L.; Nieuwenhuys, A.; Monari, D.; Desloovere, K. Kinematic Analysis of a Drinking Task in Chronic Hemiparetic Patients Using Features Analysis and Statistical Parametric Mapping. Arch. Phys. Med. Rehabil. 2018, 99, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Rueda, F.M.; Montero, F.R.; de Heredia Torres, M.P.; Diego, I.A.; Sánchez, A.M.; Page, J.M. Movement analysis of upper extremity hemiparesis in patients with cerebrovascular disease: A pilot study. Neurologia 2012, 27, 343–347. [Google Scholar] [CrossRef]
- Gulde, P.; Hermsdörfer, J. Both hands at work: The effect of aging on upper-limb kinematics in a multi-step activity of daily living. Exp. Brain Res. 2017, 235, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Šlajpah, S.; Čebašek, E.; Munih, M.; Mihelj, M. Time-Based and Path-Based Analysis of Upper-Limb Movements during Activities of Daily Living. Sensors 2023, 23, 1289. [Google Scholar] [CrossRef]
- Blaszczyszyn, M.; Szczesna, A.; Opara, J.; Konieczny, M.; Pakosz, P.; Balko, S. Functional differences in upper limb movement after early and chronic stroke based on kinematic motion indicators. Biomed Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2018. [Google Scholar] [CrossRef]
- Santos, P.; Garcia, I.; Quintão, C.; Quaresma, C. Neuromotor Pattern of the Upper Limb in Hygiene Activities Using Electromyography and Accelerometery Technology. In Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies—Biosignals, Rome, Italy, 21–23 February 2024. [Google Scholar] [CrossRef]
- Panariello, D.; Grazioso, S.; Caporaso, T.; Caporaso, T.; Palomba, A.; Di Gironimo, G.; Lanzotti, A. Biomechanical analysis of the upper body during overhead industrial tasks using electromyography and motion capture integrated with digital human models. Int. J. Interact. Des. Manuf. 2022, 16, 733–752. [Google Scholar] [CrossRef]
- Proietti, T.; Bandini, A. Wearable Technologies for Monitoring Upper Extremity Functions During Daily Life in Neurologically Impaired Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2737–2748. [Google Scholar] [CrossRef]
- Goodwin, B.M.; Cain, S.M.; Van Straaten, M.G.; Fortune, E.; Jahanian, O.; Morrow, M.M.B. Humeral elevation workspace during daily life of adults with spinal cord injury who use a manual wheelchair compared to age and sex matched able-bodied controls. PLoS ONE 2021, 16, e0248978. [Google Scholar] [CrossRef] [PubMed]
- Fortune, E.; Cloud-Biebl, B.; Madansingh, S.; Ngufor, C.; Van Straaten, M.; Goodwin, B.; Murphree, D.; Zhao, C.; Morrow, M. Estimation of manual wheelchair-based activities in the free-living environment using a neural network model with inertial body-worn sensors. J. Electromyogr. Kinesiol. 2022, 62, 102337. [Google Scholar] [CrossRef]
- Karnam, N.; Turlapaty, A.; Dubey, S.; Gokaraju, B. EMAHA-DB1: A New Upper Limb sEMG Dataset for Classification of Activities of Daily Living. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Totty, M.S.; Wade, E. Muscle Activation and Inertial Motion Data for Non-Invasive Classification of Activities of Daily Living. IEEE Trans. Biomed. Eng. 2017, 65, 1069–1076. [Google Scholar] [CrossRef]
- Santos, P.; Marquês, I.; Quintão, C.; Quaresma, C. Device Prototype for Kinematic and Electromyographic Analysis of the Upper Limb. In Doctoral Conference on Computing, Electrical and Industrial Systems—Technological Innovation for AI-Powered Cyber-Physical Systems—DoCEIS; Springer Nature: Cham, Switzerland, 2025; IFIP AICT. [Google Scholar]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive wearable systems for upper body rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef]
- Abas, N.; Bukhari, W.; Abas, M.; Tokhi, O. Electromyography assessment of forearm muscles: Towards the control of exoskeleton hand. In Proceedings of the 5th International Conference Control, Decision and Information Technologies, Thessaloniki, Greece, 10–13 April 2018; IEEE Press: New York, NY, USA, 2018; pp. 822–828. [Google Scholar] [CrossRef]
- Dimitrova, N.A.; Dimitrov, G.V. Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies. J. Electromyogr. Kinesiol. 2003, 13, 13–36. [Google Scholar] [CrossRef]
- Hug, F.; Dorel, S. Electromyographic analysis of pedaling: A review. J. Electromyogr. Kinesiol. 2009, 19, 182–198. [Google Scholar] [CrossRef]
- Sethi, A.; Ting, J.; Allen, M.; Clark, W.; Weber, D. Advances in motion and EMG based wearable technology for upper extremity function rehabilitation. J. Hand Ther. 2020, 33, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Crowd Supply. Wallysci E3K Biosensing Platform. Available online: https://pt.mouser.com/new/crowd-supply/crowd-supply-wallysci-e3k-biosensing-platform/ (accessed on 22 June 2025).
- Oosterwijk, A.; Nieuwenhuis, M.; Schans, P.; Mouton, L. Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Phys. Theory Pract. 2018, 34, 505–528. [Google Scholar] [CrossRef] [PubMed]
- Esperança Pina, J. Anatomia da Locomoção, 5th ed.; Lidel: Lisboa, Portugal, 2017. [Google Scholar]
- Santos, P.; Garcia, I.; Quaresma, C.; Quintão, C. Analysis of UL Contraction Pattern Using Electromyographic Signal During Activities of Daily Living: A Pilot Study. In Proceedings of the Seventh International Conference on Informatics and Assistive Technologies for HealthCare, Medical Support and Wellbeing, Lisbon, Portugal, 16–20 October 2022. [Google Scholar]
- Kapandji, I.A. The Physiology of the Joints: Volume 1: The Upper Limb, 7th ed.; Handspring Publishing: Edinburgh, UK, 2019. [Google Scholar]
- Freivalds, A. Biomechanics of the ULs: Mechanics, Modeling and Musculoskeletal Injuries; CRC Press: Boca Raton, FA, USA, 2011. [Google Scholar]
Phases | Interval of Mean Time (%) | Mean Duration ± SDT (%) |
---|---|---|
1 | [0, 17.2] | 17.2 ± 3.5 |
2 | [17.2, 21.6] | 4.4 ± 4.0 |
3 | [21.6, 31.4] | 9.8 ± 4.8 |
4 | [31.4, 53.2] | 21.7 ± 5.9 |
5 | [53.2, 66.8] | 13.6 ± 2.6 |
6 | [66.8, 84.7] | 17.1 ± 7.4 |
7 | [84.7, 100.0] | 15.3 ± 2.4 |
Arm | Muscle | Mean Time of Amplitude Peak (%) | Mean Amplitude Contraction Peak (mV) |
---|---|---|---|
Dominant | PM | 38.3 | 0.3 |
AD | 42.0 | 0.9 | |
MD | 43.1 | 0.4 | |
PD | 42.6 | 0.2 | |
UT | 36.1 | 0.6 | |
LT | 40.7 | 0.4 | |
Non-Dominant | PM | 44.8 | 0.4 |
AD | 39.1 | 0.2 | |
MD | 40.2 | 0.1 | |
PD | 28.0 | 0.1 | |
UT | 54.8 | 0.4 | |
LT | 53.3 | 0.4 |
Arm | Motion | Mean Time of Amplitude Peak (%) | Mean Arm Joint Range of Motion (°) |
---|---|---|---|
Dominant | F | 100.0 | −1.3 |
E | 70.3 | 8.9 | |
MR | 100.0 | −1.0 | |
LR | 45.5 | 20.1 | |
ABD | 83.0 | 1.4 | |
ADD | 47.7 | −28.1 | |
Non-Dominant | F | 84.7 | −0.2 |
E | 58.5 | 0.1 | |
MR | 36.2 | 0.5 | |
LR | 100.0 | −0.1 | |
ABD | 100.0 | 0.1 | |
ADD | 52.5 | 0.9 |
Phases | Interval of Mean Time (%) | Mean Duration ± SDT (%) |
---|---|---|
1 | [0, 15.9] | 15.9 ± 2.5 |
2 | [15.9, 21.1] | 5.2 ± 1.7 |
3 | [21.1, 44.1] | 23.0 ± 3.0 |
4 | [44.1, 55.7] | 11.6 ± 2.7 |
5 | [55.7, 69.5] | 13.7 ± 2.9 |
6 | [69.5, 86.2] | 16.8 ± 3.9 |
7 | [86.2, 100.0] | 13.8 ± 1.9 |
Arm | Muscle | Mean Time of Amplitude Peak (%) | Mean Amplitude Contraction Peak (mV) |
---|---|---|---|
Dominant | PM | 47.8 | 0.3 |
AD | 46.3 | 0.7 | |
MD | 46.7 | 0.4 | |
PD | 78.0 | 0.3 | |
UT | 46.1 | 0.8 | |
LT | 47.9 | 0.4 | |
Non-Dominant | PM | 82.0 | 0.4 |
AD | 79.5 | 0.2 | |
MD | 52.2 | 0.2 | |
PD | 59.9 | 0.2 | |
UT | 47.0 | 0.6 | |
LT | 58.1 | 0.3 |
Arm | Motion | Mean Time of Amplitude Peak (%) | Mean Arm Joint Range of Motion (°) |
---|---|---|---|
Dominant | F | 80.5 | −3.6 |
E | 44.9 | 6.1 | |
MR | 23.8 | −2.7 | |
LR | 49.2 | 6.1 | |
ABD | 12.1 | 0.9 | |
ADD | 51.7 | −6.0 | |
Non-Dominant | F | 100.0 | 0.0 |
E | 55.4 | 0.3 | |
MR | 31.4 | 1.0 | |
LR | 100.0 | −0.1 | |
ABD | 100.0 | 0.2 | |
ADD | 63.6 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.; Marquês, F.; Quintão, C.; Quaresma, C. Electromyographic and Kinematic Analysis of the Upper Limb During Drinking and Eating Using a Wearable Device Prototype. Sensors 2025, 25, 5227. https://doi.org/10.3390/s25175227
Santos P, Marquês F, Quintão C, Quaresma C. Electromyographic and Kinematic Analysis of the Upper Limb During Drinking and Eating Using a Wearable Device Prototype. Sensors. 2025; 25(17):5227. https://doi.org/10.3390/s25175227
Chicago/Turabian StyleSantos, Patrícia, Filipa Marquês, Carla Quintão, and Cláudia Quaresma. 2025. "Electromyographic and Kinematic Analysis of the Upper Limb During Drinking and Eating Using a Wearable Device Prototype" Sensors 25, no. 17: 5227. https://doi.org/10.3390/s25175227
APA StyleSantos, P., Marquês, F., Quintão, C., & Quaresma, C. (2025). Electromyographic and Kinematic Analysis of the Upper Limb During Drinking and Eating Using a Wearable Device Prototype. Sensors, 25(17), 5227. https://doi.org/10.3390/s25175227