Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing
Abstract
1. Introduction
2. Motivation for Development of TCs
2.1. Limitations of Animal Studies
2.2. Limitations of Clinical Studies
2.3. Applications of TCs: Disease Modeling, Drug Development, Human Development, and iPSC-Based Analysis
3. Incorporation of Physical and Chemical Sensing Modalities into Tissue Chips
3.1. Oxygen Sensors
3.2. pH Sensors
3.3. Fluorescence for Monitoring Barrier Permeability
3.4. TEER
4. Incorporation of Bioanalyte Sensors into Tissue Chip Models
4.1. Sensitivity Requirements
4.2. Luminescent Sensing of Biomolecules
4.3. Electrochemical Sensing of Biomolecules
4.4. Photonic Sensing
4.5. Optoelectrical Components to Modify Cells
4.6. Toward an Integrated Biosensor Tissue Chip
4.7. Challenges and Opportunities for Development
5. Comparison and Conclusions
Sensor Output Type | Tissue Type | Description | On-Chip? | Continuous? | Measurement Duration | Multiplex Capability | First and Corresponding Authors | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
Chemical (pH, O2) | Heart | Deposited iridium oxide thin film electrodes are used to measure the acidification of single cardiomyocytes in a valved microfluidic device. | Yes | Yes | ∼2.5 h | Single | Ges, Baudenbacher | 2008 | [95] |
Adipose | Real-time (1 min. resolution) measurements of absorbance at two wavelengths, used to calculate pH from phenol red-containing media, using separate LED and sensor components positioned on either side of a transparent microfluidic device. | Yes | Yes | 14 days | Single | Rajan, Lekkala | 2016 | [98] | |
Bacterial culture | Chitosan hydrogel films swell in response to changes in pH; the thickness change is measured with optical reflectometry in 10 s intervals. This is used to track bacterial proliferation in suspended culture. | Yes | Yes | ∼3.5 h | Single | Tang, Wu | 2013 | [81] | |
Circulating tumor cells | Deposited zinc oxide electrodes are used to measure the pH of circulating cells of three different lines of circulating tumor cells (human lung, murine aorta, and canine kidney epithelium). Sensitivity of 48 mV/pH. | Yes | Yes | ∼4 min | Single | Mani, Tsuchiya | 2017 | [96] | |
Intestine | Intestinal epithelium in a two-channel microfluidic device with oxygen-impermeable coating to simulate partial hypoxia. Colorimetric nanoparticle coatings (with changes measured optically) measure oxygen concentration periodically (measurement takes 2 min., and device must be removed from flow setup). | Yes | No | 24 h | Single (four sensors, two in each channel) | Grant, Ingber | 2022 | [80] | |
Pancreas | Deposited platinum-based oxygen-sensitive dye is used to continuously monitor oxygen concentration and consumption in response to glucose stimulation, allowing inferral of metabolic activity. | Yes | Yes | ∼4 h | Single (single measurement of multiple islets) | Schlünder, Loskill | 2025 | [87] | |
Liver, kidney, artery | Multiple chips connected in parallel with oxygen control through incorporated scavenger modules and optical ruthenium dye-based microbead coatings as oxygen sensors, in a separate oxygen sensing module upstream of various specific organ modules. * Oxygen monitoring is continuous. | No | Yes * | 7 days | Single (three separate oxygen sensing modules connected in parallel, with three different TCs in series) | Jiang, Zhang | 2024 | [78] | |
TEER | Lung epithelium | Epithelial barrier suspended between two microfluidic channels with integrated TEER electrodes. Impedance measurements were not continuous (every ∼5 min for disruption experiments; once per day for long-term experiments). | Yes | No | >60 days | Single | Henry, Ingber | 2017 | [83] |
Kidney epithelium (canine) | Cells cultured directly on a microelectrode array (MEA) with 20 µm resolution; different electrical parameters measure attachment, cell–cell adhesion, and metabolic activity. Individual measurements took 5 min, but were only taken at 24, 48, and 72 h. | Yes | No | 3 days | Single | Abbott, Park | 2022 | [118] | |
Various | High-throughput analysis of many tissue chips, with O2 and TEER sensors in addition to imaging. While TEER and O2 sensors are capable of real-time monitoring, measurements are actually taken every 5–30 min, dependent upon the use of multiple assays and allowing for equilibration with the environment, or once per day for long-term measurements. * TEER electrodes on chip, but in the ports far from the sample. | Yes * | No | Up to 11 days | 96-plex (interfaced with 384-well plate) | Azizgolshani, Charest | 2021 | [42] | |
Intestinal epithelium | Movable electrode for spatially-resolved TEER across a suspended epithelial barrier. | Yes | No | 5 days | Single (four different locations in channel, measured in series) | Renous, Maoz | 2021 | [84] | |
Intestine | Semi-high throughput model based on the Mimetas OrganoPlate®. TEER measurements were taken with the OrganoTEER® module, also offered by Mimetas. Additionally, periodic cytokine assays were performed off-chip from sampled media (Luminex, Genk, Belgium). * TEER measurements on-chip, cytokine assays off-chip. | Yes * | No | 11 days | 40-plex | Beaurivage, Kurek | 2019 | [119] | |
Cochlea | Semi-high throughput in a 96-well plate format. Gold electrodes are incorporated into both channels of the device for continuous TEER measurements. TEER was only measured at the beginning and end of the 14-day experiment. | Yes | No | 14 days | 16-plex | Bai, Shvartsman | 2023 | [116] | |
Blood–brain barrier | A multiplex electrode array is used to continuously monitor TEER across a multichannel coculture BBB model in real time across the entire duration of the experiment. | Yes | Yes | 5 days | 16-plex | Jeong, Han | 2018 | [114] | |
Blood–brain barrier | Multichannel BBB model that used chopstick-like electrodes to measure TEER values. Because of the high-throughput design, measurements were not continuous (4 h apart) because the electrodes had to be moved through the many ports. * For TEER, one electrode used the same port for each set of four endothelial cell modules, but the other electrode used unique ports for the corresponding four astrocyte modules. | Yes | No | ∼3 days | 64-plex * | Xu, Qin | 2016 | [115] | |
Blood–brain barrier | Gold electrodes patterned on a polycarbonate porous membrane are used to perform electric cell–substrate impedance sensing on a layer of human IPSC-derived brain endothelial cells (and hIPSC-derived astrocytes on the other side of the membrane) in response to nitrosative stress. * ECIS is cyclic, with 2 min resolution. | Yes | Yes * | ∼90 min | Single | Matthiesen, Herland | 2021 | [116] | |
Electrochemical | Liver, heart | Modular assembly of multiple organoid platforms (liver and heart), peristaltic pump, and bubble trap, with downstream physical/chemical (temp., pH, O2) sensing and biosensing (albumin, GST-a, CK-MB) modules, connected to a microfluidic breadboard via tubing. Sensors are capable of being regenerated upon saturation. Reported LODs of 2–90 pg/mL for the electrochemical protein sensors. | No | No | 5 days | Single (two organ chips, plus multiplex sensor chips—single replicates of each of the three biomarkers) | Zhang, Khademhosseini | 2016 | [39] |
Muscle | Electrical (via MEA) and biological stimulation of muscle cells, and antibody-based electrochemical detection (with electroactive enzymatic sandwich detection antibody) of secreted protein analytes (IL-6 and TNF-α) in a separate downstream sensing module. LODs of 8 and 2 ng/mL range. | No | No | Up to 48 h | Single (one TC device, with multiplexed sensor: two analytes detected in series, with each analyte having eight replicate sensors) | Ortega, Ramón-Azcón | 2019 | [123] | |
Breast cancer | Electrochemical sensors are adapted for continuous monitoring of dissolved oxygen, and enzymatic glucose/lactate detection for the monitoring of glucose consumption and lactate production in breast cancer organoids under hypoxic conditions and in response to doxorubicin treatment. LODs were 7.6 and 6.1 µM for glucose and lactate, respectively. | Yes | Yes | 6 days | Single (integrated sensor chip has 10 replicates for oxygen, plus single-replicate glucose and lactate sensors) | Dornhof, Weltin | 2022 | [183] | |
Plasmonic/ photonic | Colorectal cancer organoid | Tumor organoids are arrayed on an antibody-functionalized plasmonic gold nanohole array. Secretion of VEGF-A is measured in real time under hypoxic conditions and chemotherapeutic drug treatment. LOD of 157 pg/mL. * Detection wells are separated from organoid laterally by 70 µm by a micropillar array since cells directly on top of the nanohole array will greatly affect the plasmonic signal. | Yes * | Yes | 20 h | Up to ∼90-plex (100 microwells to encapsulate organoids, but some are kept empty and used as a reference) | Liu, Altug | 2024 | [181] |
Lung epithelium | Antibody-based photonic ring resonator sensors are immediately adjacent to the cell layer in the bottom channel of the microfluidic device. Multiplex detection of IL-1β, IL-6, and CRP with LODs of 3.1 and 7.6, and 1.5 ng/mL, respectively. | Yes | Yes | 3 h | Single (one TC with sensing of two analytes simultaneously (three replicates) | Cognetti, Miller | 2023 | [184] | |
MEA/ Electro- chemical | Kidney epithelium (canine) | OECTs are used to form an electrochemical gradient along the length of a channel, with consequent localization of epithelial cells. | Yes | NA | NA | Single | Bolin, Berggren | 2009 | [179] |
Optogenetic | Neuronal | Multichannel microfluidic device with integrated LED to stimulate optogenetically modified neurons; measured downstream oligodendrocyte maturation. | Yes | NA | Continuous stimulation pulses for 1 h daily for up to 14 days | Three-plex (where each culture setup contained two wells, illuminated by six total LEDs, one for each well) | Lee, Yang | 2016 | [174] |
Combined optogenetic/ MEA | Neuronal, cardio- myocyte | Demonstrates medium-high throughput of dual LED stimulation and MEA electrical activity recording in static culture. MEA provided by Axion Biosystems (Atlanta, USA). * Individual recordings were continuous, but they were taken at least one day apart. | Yes | No * | 12 days | 48-plex (192 LEDs in 48 groups of four different wavelengths; MEA has 768 electrodes with 16 per well) | Clements, Ross | 2016 | [175] |
Funding
Conflicts of Interest
References
- Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576. [Google Scholar] [CrossRef]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. 2003, 4, 261–286. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Franke, T.A.; Wixforth, A. Microfluidics for Miniaturized Laboratories on a Chip. ChemPhysChem 2008, 9, 2140–2156. [Google Scholar] [CrossRef]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends Pharmacol. Sci. 2021, 42, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Navaee, F.; Stradolini, F.; Renaud, P.; Carrara, S. Organs-on-chip monitoring: Sensors and other strategies. Microphysiol. Syst. 2018, 1, 1. [Google Scholar] [CrossRef]
- Sabaté del Río, J.; Ro, J.; Yoon, H.; Park, T.E.; Cho, Y.K. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens. Bioelectron. 2023, 224, 115057. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kumari, S.; He, H.; Mishra, P.; Singh, B.N.; Singh, D.; Liu, S.; Srivastava, P.; Li, C. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization. Biosens. Bioelectron. 2023, 231, 115285. [Google Scholar] [CrossRef]
- Carbone, L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Sci. Rep. 2021, 11, 493. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert. Opin. Drug Metab. Toxicol. 2006, 2, 875–894. [Google Scholar] [CrossRef]
- Zschaler, J.; Schlorke, D.; Arnhold, J. Differences in Innate Immune Response between Man and Mouse. Crit. Rev.TM Immunol. 2014, 34, 433–454. [Google Scholar] [CrossRef]
- Meigs, L.; Smirnova, L.; Rovida, C.; Leist, M.; Hartung, T. Animal testing and its alternatives—The most important omics is economics. ALTEX—Altern. Anim. Exp. 2018, 35, 275–305. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A. The Flaws and Human Harms of Animal Experimentation. Camb. Q. Healthc. Ethics 2015, 24, 407. [Google Scholar] [CrossRef] [PubMed]
- Pound, P.; Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 2018, 16, 304. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Lu, H.; Gaudet, S.; Schmidt, M.A.; Jensen, K.F. A microfabricated device for subcellular organelle sorting. Anal. Chem. 2004, 76, 5705–5712. [Google Scholar] [CrossRef]
- Satori, C.P.; Kostal, V.; Arriaga, E.A. Review on recent advances in the analysis of isolated organelles. Anal. Chim. Acta 2012, 753, 8–18. [Google Scholar] [CrossRef]
- Ortiz, R.; Koh, D.; Kim, D.H.; Rabbani, M.T.; Velasquez, C.A.; Sonker, M.; Arriaga, E.A.; Ros, A. Continuous organelle separation in an insulator-based dielectrophoretic device. Electrophoresis 2022, 43, 1283–1296. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Dollé, J.P.; Morrison, B.; Schloss, R.S.; Yarmush, M.L. Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. Technology 2014, 2, 106–117. [Google Scholar] [CrossRef]
- Kang, Y.J.; Cho, H. Human brain organoids in Alzheimer’s disease. Organoid 2021, 1, e5. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Zhao, P.; Nandakumar, K.; Wang, L.; Song, Y. Microfluidics-Based Systems in Diagnosis of Alzheimer’s Disease and Biomimetic Modeling. Micromachines 2020, 11, 787. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, B.K.; Jeong, G.S.; Hyun, J.K.; Lee, C.J.; Lee, S.H. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 2015, 15, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Choi, S.H.; Kim, E.; Bylykbashi, E.; Kim, J.A.; Chung, S.; Kim, D.Y.; Kamm, R.D.; Tanzi, R.E. Blood–Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer’s Disease. Adv. Sci. 2019, 6, 1900962. [Google Scholar] [CrossRef]
- Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A.M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y.S.; Zarrinpar, A. Liver-on-a-Chip Models of Fatty Liver Disease. Hepatology 2020, 71, 733–740. [Google Scholar] [CrossRef]
- Lasli, S.; Kim, H.J.; Lee, K.; Suurmond, C.E.; Goudie, M.; Bandaru, P.; Sun, W.; Zhang, S.; Zhang, N.; Ahadian, S.; et al. A Human Liver-on-a-Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. Adv. Biosyst. 2019, 3, 1900104. [Google Scholar] [CrossRef]
- Du, K.; Li, S.; Li, C.; Li, P.; Miao, C.; Luo, T.; Qiu, B.; Ding, W. Modeling nonalcoholic fatty liver disease on a liver lobule chip with dual blood supply. Acta Biomater. 2021, 134, 228–239. [Google Scholar] [CrossRef]
- Smith, A.S.T.; Davis, J.; Lee, G.; Mack, D.L.; Kim, D.H. Muscular dystrophy in a dish: Engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov. Today 2016, 21, 1387–1398. [Google Scholar] [CrossRef]
- Michielin, F.; Serena, E.; Pavan, P.; Elvassore, N. Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Adv. 2015, 5, 98429–98439. [Google Scholar] [CrossRef]
- Serena, E.; Zatti, S.; Zoso, A.; Verso, F.L.; Tedesco, F.S.; Cossu, G.; Elvassore, N. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts’ Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model. Stem Cells Transl. Med. 2016, 5, 1676–1683. [Google Scholar] [CrossRef]
- Kang, Y.B.; Rawat, S.; Duchemin, N.; Bouchard, M.; Noh, M. Human Liver Sinusoid on a Chip for Hepatitis B Virus Replication Study. Micromachines 2017, 8, 27. [Google Scholar] [CrossRef]
- Ortega-Prieto, A.M.; Skelton, J.K.; Wai, S.N.; Large, E.; Lussignol, M.; Vizcay-Barrena, G.; Hughes, D.; Fleck, R.A.; Thursz, M.; Catanese, M.T.; et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat. Commun. 2018, 9, 682. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Xu, N.; Liu, Z.F.; Pang, D.W.; Zhang, Z.L. A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials 2019, 219, 119367. [Google Scholar] [CrossRef] [PubMed]
- Deinhardt-Emmer, S.; Rennert, K.; Schicke, E.; Cseresnyés, Z.; Windolph, M.; Nietzsche, S.; Heller, R.; Siwczak, F.; Haupt, K.F.; Carlstedt, S.; et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 2020, 12, 025012. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Bai, H.; Oh, C.Y.; Jin, L.; Prantil-Baun, R.; Ingber, D.E. Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip. Microbiol Spectr. 2021, 9, e0025721. [Google Scholar] [CrossRef]
- Xu, Z.; Li, E.; Guo, Z.; Yu, R.; Hao, H.; Xu, Y.; Sun, Z.; Li, X.; Lyu, J.; Wang, Q. Design and Construction of a Multi-Organ Microfluidic Chip Mimicking the in vivo Microenvironment of Lung Cancer Metastasis. ACS Appl. Mater. Interfaces 2016, 8, 25840–25847. [Google Scholar] [CrossRef]
- Ronaldson-Bouchard, K.; Teles, D.; Yeager, K.; Tavakol, D.N.; Zhao, Y.; Chramiec, A.; Tagore, S.; Summers, M.; Stylianos, S.; Tamargo, M.; et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 2022, 6, 351–371. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Aleman, J.; Shin, S.R.; Kilic, T.; Kim, D.; Shaegh, S.A.M.; Massa, S.; Riahi, R.; Chae, S.; Hu, N.; et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, E2293–E2302. [Google Scholar] [CrossRef]
- Khalid, M.A.U.; Kim, Y.S.; Ali, M.; Lee, B.G.; Cho, Y.J.; Choi, K.H. A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem. Eng. J. 2020, 155, 107469. [Google Scholar] [CrossRef]
- Si, L.; Bai, H.; Rodas, M.; Cao, W.; Oh, C.Y.; Jiang, A.; Moller, R.; Hoagland, D.; Oishi, K.; Horiuchi, S.; et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 2021, 5, 815–829. [Google Scholar] [CrossRef]
- Azizgolshani, H.; Coppeta, J.R.; Vedula, E.M.; Marr, E.E.; Cain, B.P.; Luu, R.J.; Lech, M.P.; Kann, S.H.; Mulhern, T.J.; Tandon, V.; et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 2021, 21, 1454–1474. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, L.; Zhou, E.M.; Xu, J.; Shen, S.; Wang, J. On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay. Anal. Chem. 2016, 88, 1719–1727. [Google Scholar] [CrossRef]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef] [PubMed]
- Text—S.5002—117th Congress (2021–2022): FDA Modernization Act 2.0|Congress.gov|Library of Congress. Available online: https://www.congress.gov/bill/117th-congress/senate-bill/5002/text (accessed on 22 January 2024).
- Bai, H.; Si, L.; Jiang, A.; Belgur, C.; Zhai, Y.; Plebani, R.; Oh, C.Y.; Rodas, M.; Patil, A.; Nurani, A.; et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 2022, 13, 1928. [Google Scholar] [CrossRef] [PubMed]
- Cantex Pharmaceuticals|Cantex to Expand Development of Its Drug, Azeliragon, Collaborating with Harvard’s Wyss Institute, as a Treatment of COVID-19 and Other Inflammatory Lung Diseases. Available online: https://cantex.com/2022/02/24/cantex-to-expand-development-of-its-drug-azeliragon-collaborating-with-harvards-wyss-institute-as-a-treatment-of-covid-19-and-other-inflammatory-lung-diseases-2/ (accessed on 23 January 2024).
- FDA. FDA Announces Plan to Phase Out Animal Testing Requirement for Monoclonal Antibodies Other Drugs. Available online: https://www.fda.gov/news-events/press-announcements/fda-announces-plan-phase-out-animal-testing-requirement-monoclonal-antibodies-and-other-drugs (accessed on 6 June 2025).
- National Institutes of Health (NIH). NIH to Prioritize Human-Based Research Technologies. Available online: https://www.nih.gov/nih-prioritize-human-based-research-technologies (accessed on 6 June 2025).
- Takayama, S.; Ostuni, E.; LeDuc, P.; Naruse, K.; Ingber, D.E.; Whitesides, G.M. Subcellular positioning of small molecules. Nature 2001, 411, 1016. [Google Scholar] [CrossRef] [PubMed]
- Demers, C.J.; Soundararajan, P.; Chennampally, P.; Cox, G.A.; Briscoe, J.; Collins, S.D.; Smith, R.L. Development-on-chip: In vitro neural tube patterning with a microfluidic device. Development 2016, 143, 1884–1892. [Google Scholar] [CrossRef]
- Sonnen, K.F.; Lauschke, V.M.; Uraji, J.; Falk, H.J.; Petersen, Y.; Funk, M.C.; Beaupeux, M.; François, P.; Merten, C.A.; Aulehla, A. Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation. Cell 2018, 172, 1079–1090.e12. [Google Scholar] [CrossRef]
- Wang, Y.I.; Abaci, H.E.; Shuler, M.L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 2017, 114, 184–194. [Google Scholar] [CrossRef]
- Ingber, D.E. Developmentally inspired human ‘organs on chips’. Development 2018, 145, dev156125. [Google Scholar] [CrossRef]
- Kim, H.J.; Huh, D.; Hamilton, G.; Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012, 12, 2165–2174. [Google Scholar] [CrossRef]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Yuan Hsin, H.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Barrile, R.; van der Meer, A.; Mammoto, A.; Mammoto, T.; De Ceunynck, K.; Aisiku, O.; Otieno, M.; Louden, C.; Hamilton, G.; et al. Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clin. Pharmacol. Ther. 2018, 103, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Aasen, T.; Raya, A.; Barrero, M.J.; Garreta, E.; Consiglio, A.; Gonzalez, F.; Vassena, R.; Bilić, J.; Pekarik, V.; Tiscornia, G.; et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 2008, 26, 1276–1284. [Google Scholar] [CrossRef]
- Wichterle, H.; Lieberam, I.; Porter, J.A.; Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002, 110, 385–397. [Google Scholar] [CrossRef]
- Dimos, J.T.; Rodolfa, K.T.; Niakan, K.K.; Weisenthal, L.M.; Mitsumoto, H.; Chung, W.; Croft, G.F.; Saphier, G.; Leibel, R.; Goland, R.; et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321, 1218–1221. [Google Scholar] [CrossRef]
- Burkhardt, M.F.; Martinez, F.J.; Wright, S.; Ramos, C.; Volfson, D.; Mason, M.; Garnes, J.; Dang, V.; Lievers, J.; Shoukat-Mumtaz, U.; et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 2013, 56, 355–364. [Google Scholar] [CrossRef]
- Yahata, N.; Asai, M.; Kitaoka, S.; Takahashi, K.; Asaka, I.; Hioki, H.; Kaneko, T.; Maruyama, K.; Saido, T.C.; Nakahata, T.; et al. Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer’s Disease. PLoS ONE 2011, 6, e25788. [Google Scholar] [CrossRef]
- Sharma, A.; Sances, S.; Workman, M.J.; Svendsen, C.N. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020, 26, 309–329. [Google Scholar] [CrossRef]
- Vatine, G.D.; Barrile, R.; Workman, M.J.; Sances, S.; Barriga, B.K.; Rahnama, M.; Barthakur, S.; Kasendra, M.; Lucchesi, C.; Kerns, J.; et al. Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and Personalized Medicine Applications. Cell Stem Cell 2019, 24, 995–1005.e6. [Google Scholar] [CrossRef]
- Sances, S.; Ho, R.; Vatine, G.; West, D.; Laperle, A.; Meyer, A.; Godoy, M.; Kay, P.S.; Mandefro, B.; Hatata, S.; et al. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development. Stem Cell Rep. 2018, 10, 1222–1236. [Google Scholar] [CrossRef]
- Cordon-Cardo, C.; O’BRien, J.P.; Casals, D.; Rittman-Grauer, L.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 1989, 86, 695–698. [Google Scholar] [CrossRef]
- Wilson, G.; Hassan, I.; Dix, C.; Williamson, I.; Shah, R.; Mackay, M.; Artursson, P. Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J. Control. Release 1990, 11, 25–40. [Google Scholar] [CrossRef]
- Horowitz, S. Pathways to cell death in hyperoxia. Chest 1999, 116, 64S–67S. [Google Scholar] [CrossRef]
- Franko, A.J.; Sutherland, R.M. Rate of Death of Hypoxic Cells in Multicell Spheroids. Radiat. Res. 1978, 76, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Carreau, A.; Hafny-Rahbi BEl Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 2011, 15, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Rivera, K.R.; Yokus, M.A.; Erb, P.D.; Pozdin, V.A.; Daniele, M. Measuring and regulating oxygen levels in microphysiological systems: Design, material, and sensor considerations. Analyst 2019, 144, 3190–3215. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Wolf, R.; Granger, D.; Taylor, Z. Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 1953, 6, 189–193. [Google Scholar] [CrossRef]
- Suzuki, H.; Hirakawa, T.; Watanabe, I.; Kikuchi, Y. Determination of blood pO2 using a micromachined Clark-type oxygen electrode. Anal. Chim. Acta 2001, 431, 249–259. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Lvov, Y.; McShane, M.J.; Gale, B.K. Electrostatic self-assembly of a ruthenium-based oxygen sensitive dye using polyion–dye interpolyelectrolyte formation. Sens. Actuators B Chem. 2002, 87, 336–345. [Google Scholar] [CrossRef]
- Gitlin, L.; Hoera, C.; Meier, R.J.; Nagl, S.; Belder, D. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring. Lab Chip 2013, 13, 4134–4141. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Ying, G.; Yin, Y.; Guo, J.; Lozada, J.; Padilla, A.V.; Gómez, A.; de Melo, B.A.G.; Mestre, F.L.; Gansevoort, M.; et al. A closed-loop modular multiorgan-on-chips platform for self-sustaining and tightly controlled oxygenation. Proc. Natl. Acad. Sci. USA 2024, 121, e2413684121. [Google Scholar] [CrossRef]
- Lasave, L.C.; Borisov, S.M.; Ehgartner, J.; Mayr, T. Quick and simple integration of optical oxygen sensors into glass-based microfluidic devices. RSC Adv. 2015, 5, 70808–70816. [Google Scholar] [CrossRef]
- Grant, J.; Lee, E.; Almeida, M.; Kim, S.; LoGrande, N.; Goyal, G.; Sesay, A.M.; Breault, D.T.; Prantil-Baun, R.; Ingber, D.E. Establishment of physiologically relevant oxygen gradients in microfluidic organ chips. Lab Chip 2022, 22, 1584–1593. [Google Scholar] [CrossRef]
- Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal. Chem. 2013, 85, 2787–2794. [Google Scholar] [CrossRef]
- McCloskey, M.C.; Kasap, P.; Ahmad, S.D.; Su, S.; Chen, K.; Mansouri, M.; Ramesh, N.; Nishihara, H.; Belyaev, Y.; Abhyankar, V.V.; et al. The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Adv. Healthc. Mater. 2022, 11, e2200804. [Google Scholar] [CrossRef]
- Henry, O.Y.F.; Villenave, R.; Cronce, M.J.; Leineweber, W.D.; Benz, M.A.; Ingber, D.E. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 2017, 17, 2264–2271. [Google Scholar] [CrossRef]
- Renous, N.; Kiri, M.D.; Barnea, R.A.; Rauti, R.; Leichtmann-Bardoogo, Y.; Maoz, B.M. Spatial trans-epithelial electrical resistance (S-TEER) integrated in organs-on-chips. Lab Chip 2021, 22, 71–79. [Google Scholar] [CrossRef]
- Katoh, R.; Nakamura, M.; Sasaki, Y.; Furube, A.; Yokoyama, T.; Nanjo, H. Development of an Oxygen Sensor Based on Visual Observation of Luminescence Color Change. Chem. Lett. 2007, 36, 1310–1311. [Google Scholar] [CrossRef]
- Oomen, P.E.; Skolimowski, M.D.; Verpoorte, E. Implementing oxygen control in chip-based cell and tissue culture systems. Lab Chip 2016, 16, 3394–3414. [Google Scholar] [CrossRef]
- Schlünder, K.; Cipriano, M.; Zbinden, A.; Fuchs, S.; Mayr, T.; Schenke-Layland, K.; Loskill, P. Microphysiological pancreas-on-chip platform with integrated sensors to model endocrine function and metabolism. Lab Chip 2024, 24, 2080–2093. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.C. Responses of cells to pH changes in the medium. J. Cell Biol. 1962, 15, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Schönichen, A.; Webb, B.A.; Jacobson, M.P.; Barber, D.L. Considering Protonation as a Post-translational Modification Regulating Protein Structure and Function. Annu. Rev. Biophys. 2013, 42, 289. [Google Scholar] [CrossRef]
- White, K.A.; Ruiz, D.G.; Szpiech, Z.A.; Strauli, N.B.; Hernandez, R.D.; Jacobson, M.P.; Barber, D.L. Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Sci. Signal 2017, 10, eaam9931. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519. [Google Scholar] [CrossRef]
- Griffiths, J.R. Are cancer cells acidic? Br. J. Cancer 1991, 64, 425. [Google Scholar] [CrossRef]
- Marunaka, Y. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function. World J. Diabetes 2015, 6, 125. [Google Scholar] [CrossRef]
- Ges, I.A.; Ivanov, B.L.; Schaffer, D.K.; Lima, E.A.; Werdich, A.A.; Baudenbacher, F.J. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 2005, 21, 248–256. [Google Scholar] [CrossRef]
- Ges, I.A.; Baudenbacher, F. Microfluidic device to confine single cardiac myocytes in sub-nanoliter volumes for extracellular pH measurements. J. Exp. Nanosci. 2008, 3, 63–75. [Google Scholar] [CrossRef]
- Mani, G.K.; Morohoshi, M.; Yasoda, Y.; Yokoyama, S.; Kimura, H.; Tsuchiya, K. ZnO-Based Microfluidic pH Sensor: A Versatile Approach for Quick Recognition of Circulating Tumor Cells in Blood. ACS Appl. Mater. Interfaces 2017, 9, 5193–5203. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, E.B.; Leosson, K.; Fleming, R.M.T.; Halldorsson, S. Real-time optical pH measurement in a standard microfluidic cell culture system. Biomed. Opt. Express 2013, 4, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Kattipparambil Rajan, D.; Patrikoski, M.; Verho, J.; Sivula, J.; Ihalainen, H.; Miettinen, S.; Lekkala, J. Optical non-contact pH measurement in cell culture with sterilizable, modular parts. Talanta 2016, 161, 755–761. [Google Scholar] [CrossRef]
- Wirnsberger, G.; Scott, B.J.; Stucky, G.D. pH Sensing with mesoporous thin films. Chem. Commun. 2001, 119–120. [Google Scholar] [CrossRef]
- Adriani, G.; Ma, D.; Pavesi, A.; Kamm, R.D.; Goh, E.L.K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 2017, 17, 448–459. [Google Scholar] [CrossRef]
- Arık, Y.B.; Buijsman, W.; Loessberg-Zahl, J.; Cuartas-Vélez, C.; Veenstra, C.; Logtenberg, S.; Grobbink, A.M.; Bergveld, P.; Gagliardi, G.; Hollander, A.I.D.; et al. Microfluidic organ-on-a-chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure. Lab Chip 2021, 21, 272–283. [Google Scholar] [CrossRef]
- Wevers, N.R.; Kasi, D.G.; Gray, T.; Wilschut, K.J.; Smith, B.; van Vught, R.; Shimizu, F.; Sano, Y.; Kanda, T.; Marsh, G.; et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 2018, 15, 23. [Google Scholar] [CrossRef]
- Zakharova, M.; Carmo, M.P.D.; van der Helm, M.; Le-The, H.; de Graaf, M.N.S.; Orlova, V.V.; Berg, A.v.D.; van der Meer, A.D.; Broersen, K.; Segerink, L.I. Multiplexed blood–brain barrier organ-on-chip. Lab Chip 2020, 20, 3132–3143. [Google Scholar] [CrossRef]
- Ma, S.H.; Lepak, L.A.; Hussain, R.J.; Shain, W.; Shuler, M.L. An endothelial and astrocyte co-culture model of the blood–brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip 2005, 5, 74–85. [Google Scholar] [CrossRef]
- Hudecz, D.; Khire, T.; Chung, H.L.; Adumeau, L.; Glavin, D.; Luke, E.; Nielsen, M.S.; Dawson, K.A.; McGrath, J.L.; Yan, Y. Ultrathin Silicon Membranes for In Situ Optical Analysis of Nanoparticle Translocation Across a Human Blood-Brain Barrier Model. ACS Nano 2020, 14, 1111. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Wu, A.; Massidda, M.W.; Foster, C.; Thomas, N.; Lee, D.-W.; Koh, H.; Ju, Y.; Kim, J.; Kim, H.J. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 2019, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Kim, H.J. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat. Protoc. 2022, 17, 910–939. [Google Scholar] [CrossRef]
- Mori, N.; Morimoto, Y.; Takeuchi, S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 2017, 116, 48–56. [Google Scholar] [CrossRef]
- Kim, J.J.; Ellett, F.; Thomas, C.N.; Jalali, F.; Anderson, R.R.; Irimia, D.; Raff, A.B. A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip 2019, 19, 3094–3103. [Google Scholar] [CrossRef]
- Kim, K.; Jeon, H.M.; Choi, K.C.; Sung, G.Y. Testing the Effectiveness of Curcuma longa Leaf Extract on a Skin Equivalent Using a Pumpless Skin-on-a-Chip Model. Int. J. Mol. Sci. 2020, 21, 3898. [Google Scholar] [CrossRef]
- Claudio, L. Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer’s disease patients. Acta Neuropathol. 1995, 91, 6–14. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Kanekiyo, T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1965. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.; Shetty, A.K.; Abou-Donia, M.B. Disruption of the Blood–Brain Barrier and Neuronal Cell Death in Cingulate Cortex, Dentate Gyrus, Thalamus, and Hypothalamus in a Rat Model of Gulf-War Syndrome. Neurobiol. Dis. 2002, 10, 306–326. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, S.; Buonocore, J.; Park, J.; Welsh, C.J.; Li, J.; Han, A. A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array. IEEE Trans. Biomed. Eng. 2018, 65, 431–439. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Yu, Y.; Sizdahkhani, S.; Ho, W.S.; Yin, F.; Wang, L.; Zhu, G.; Zhang, M.; Jiang, L.; et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 2016, 6, 36670. [Google Scholar] [CrossRef]
- Matthiesen, I.; Voulgaris, D.; Nikolakopoulou, P.; Winkler, T.E.; Herland, A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. Small 2021, 17, 2101785. [Google Scholar] [CrossRef]
- Bai, J.; Bolonduro, O.; Gordiichuk, P.; Green, R.M.; Chung, H.H.-L.; Mahmud, K.; Shvartsman, D. An integrative round window membrane/cochlear microphysiological system with sensing components for the study of real-time drug response. Lab Chip 2025, 25, 2744–2756. [Google Scholar] [CrossRef]
- Abbott, J.; Mukherjee, A.; Wu, W.; Ye, T.; Jung, H.S.; Cheung, K.M.; Gertner, R.S.; Basan, M.; Ham, D.; Park, H. Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array. Lab Chip 2022, 22, 1286–1296. [Google Scholar] [CrossRef]
- Beaurivage, C.; Naumovska, E.; Chang, Y.X.; Elstak, E.D.; Nicolas, A.; Wouters, H.; van Moolenbroek, G.; Lanz, H.L.; Trietsch, S.J.; Joore, J.; et al. Development of a Gut-on-a-Chip Model for High Throughput Disease Modeling and Drug Discovery. Int. J. Mol. Sci. 2019, 20, 5661. [Google Scholar] [CrossRef]
- Khire, T.S.; Nehilla, B.J.; Getpreecharsawas, J.; Gracheva, M.E.; Waugh, R.E.; McGrath, J.L. Finite Element Modeling to Analyze TEER Values Across Silicon Nanomembranes. Biomed. Microdevices 2018, 20, 11. [Google Scholar] [CrossRef]
- Yeste, J.; Illa, X.; Gutiérrez, C.; Solé, M.; Guimerà, A.; Villa, R. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J. Phys. D Appl. Phys. 2016, 49, 375401. [Google Scholar] [CrossRef]
- Elbrecht, D.H.; Long, C.J.; Hickman, J.J. Transepithelial/endothelial Electrical Resistance (TEER) theory and ap-plications for microfluidic body-on-a-chip devices Keywords TEER Body-on-a-chip Barrier tissue Blood-brain barrier Organ Endothelial cells Epithelial cells Human-on-a-chip. J. Rare Dis. Res. Treat. 2016, 1, 46–52. Available online: www.rarediseasesjournal.com (accessed on 30 October 2023).
- Ortega, M.A.; Fernández-Garibay, X.; Castaño, A.G.; De Chiara, F.; Hernández-Albors, A.; Balaguer-Trias, J.; Ramón-Azcón, J. Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Lab Chip 2019, 19, 2568–2580. [Google Scholar] [CrossRef] [PubMed]
- Forlenza, O.V.; Diniz, B.S.; Talib, L.L.; Mendonça, V.A.; Ojopi, E.B.; Gattaz, W.F.; Teixeira, A.L. Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2009, 28, 507–512. [Google Scholar] [CrossRef]
- Swardfager, W.; Lanctôt, K.; Rothenburg, L.; Wong, A.; Cappell, J.; Herrmann, N. A Meta-Analysis of Cytokines in Alzheimer’s Disease. BPS 2010, 68, 930–941. [Google Scholar] [CrossRef]
- e Silva, N.M.L.; Gonçalves, R.A.; Pascoal, T.A.; Lima-Filho, R.A.S.; Resende, E.d.P.F.; Vieira, E.L.M.; Teixeira, A.L.; de Souza, L.C.; Peny, J.A.; Fortuna, J.T.S.; et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl. Psychiatry 2021, 11, 251. [Google Scholar] [CrossRef]
- Kiechle, K.; Bazarian, J.J.; Merchant-Borna, K.; Stoecklein, V.; Rozen, E.; Blyth, B.; Huang, J.H.; Dayawansa, S.; Kanz, K.; Biberthaler, P.; et al. Subject-specific increases in serum S-100B distinguish sports-related concussion from sports-related exertion. PLoS ONE 2014, 9, e84977. [Google Scholar] [CrossRef]
- Puvenna, V.; Brennan, C.; Shaw, G.; Yang, C.; Marchi, N.; Bazarian, J.J.; Merchant-Borna, K.; Janigro, D.; Deli, M.A. Significance of ubiquitin carboxy-terminal hydrolase L1 elevations in athletes after sub-concussive head hits. PLoS ONE 2014, 9, e96296. [Google Scholar] [CrossRef] [PubMed]
- Kindt, J.T.; Luchansky, M.S.; Qavi, A.J.; Lee, S.H.; Bailey, R.C. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal. Chem. 2013, 85, 10653–10657. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Linnet, A.; Buki, A.; Robicsek, S.; Gabrielli, A.; Tepas, J.; Papa, L.; Brophy, G.M.; Tortella, F.; Hayes, R.L.; et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 2012, 70, 666. [Google Scholar] [CrossRef]
- Li, X.; Soler, M.; Szydzik, C.; Khoshmanesh, K.; Schmidt, J.; Coukos, G.; Mitchell, A.; Altug, H. Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion. Small 2018, 14, e1800698. [Google Scholar] [CrossRef]
- Su, S.-H.; Song, Y.; Stephens, A.; Situ, M.; McCloskey, M.C.; McGrath, J.L.; Andjelkovic, A.V.; Singer, B.H.; Kurabayashi, K. A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cytokine secretion monitoring. Biosens. Bioelectron. 2023, 224, 115030. [Google Scholar] [CrossRef]
- Jannath, K.A.; Karim, M.M.; Saputra, H.A.; Seo, K.D.; Kim, K.B.; Shim, Y.B. A review on the recent advancements in nanomaterials for nonenzymatic lactate sensing. Bull. Korean Chem. Soc. 2023, 44, 407–419. [Google Scholar] [CrossRef]
- Shakhih, M.F.M.; Rosslan, A.S.; Noor, A.M.; Ramanathan, S.; Lazim, A.M.; Wahab, A.A. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. J. Electrochem. Soc. 2021, 168, 067502. [Google Scholar] [CrossRef]
- Dymond, A.M.; Kaechele, L.E.; Jurist, J.M.; Crandall, P.H. Brain tissue reaction to some chronically implanted metals. J. Neurosurg. 1970, 33, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.S.; Autrup, H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 2012, 208, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Bracaglia, S.; Ranallo, S.; Plaxco, K.W.; Ricci, F. Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sens. 2021, 6, 2442–2448. [Google Scholar] [CrossRef]
- Zargartalebi, H.; Yousefi, H.; Flynn, C.D.; Gomis, S.; Das, J.; Young, T.L.; Chien, E.; Mubareka, S.; McGeer, A.; Wang, H.; et al. Capillary-Assisted Molecular Pendulum Bioanalysis. J. Am. Chem. Soc. 2022, 2022, 18338–18349. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Alves, J.F.; Frasco, M.F.; Piloto, A.M.; Serrano, V.; Mateus, D.; Sebastião, A.I.; Matos, A.M.; Carmo, A.; Cruz, T.; et al. An ultra-sensitive electrochemical biosensor using the Spike protein for capturing antibodies against SARS-CoV-2 in point-of-care. Mater. Today Bio 2022, 16, 100354. [Google Scholar] [CrossRef]
- Elshafey, R.; Tavares, A.C.; Siaj, M.; Zourob, M. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens. Bioelectron. 2013, 50, 143–149. [Google Scholar] [CrossRef]
- Hasan, M.R.; Ahommed, M.S.; Daizy, M.; Bacchu, M.; Ali, M.; Al-Mamun, M.; Aly, M.S.; Khan, M.; Hossain, S. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens. Bioelectron. X 2021, 8, 100075. [Google Scholar] [CrossRef]
- Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Ahmad, A.N.; Alhamlan, F.S.; Shuaib, M.; et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021, 5, 666–677. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef]
- Bryan, M.R.; Miller, B.L. Silicon optical sensor arrays for environmental and health applications. Curr. Opin. Environ. Sci. Heal. 2019, 10, 22–29. [Google Scholar] [CrossRef]
- Blevins, M.G.; Fernandez-Galiana, A.; Hooper, M.J.; Boriskina, S.V. Roadmap on Universal Photonic Biosensors for Real-Time Detection of Emerging Pathogens. Photonics 2021, 8, 342. [Google Scholar] [CrossRef]
- Jugessur, A.S.; Dou, J.; Aitchison, J.S.; De La Rue, R.M.; Gnan, M. A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications. Microelectron. Eng. 2009, 86, 1488–1490. [Google Scholar] [CrossRef]
- Baker, J.E.; Sriram, R.; Miller, B.L. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing. Lab Chip 2015, 15, 971. [Google Scholar] [CrossRef] [PubMed]
- Luff, B.J.; Piehler, J.; Wilkinson, J.S.; Ingenhoff, J.; Fabricius, N.; Hollenbach, U. Integrated Optical Mach-Zehnder Biosensor. J. Light. Technol. 1998, 16, 583. [Google Scholar] [CrossRef]
- Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.-J.; Lo, G.-Q.; Park, M.K. Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 2013, 188, 681–688. [Google Scholar] [CrossRef]
- Subramanian, S.; Wu, H.Y.; Constant, T.; Xavier, J.; Vollmer, F. Label-Free Optical Single-Molecule Micro- and Nanosensors. Adv. Mater. 2018, 30, 1801246. [Google Scholar] [CrossRef]
- Liu, L.; Jin, M.; Shi, Y.; Lin, J.; Zhang, Y.; Jiang, L.; Zhou, G.; He, S. Optical integrated chips with micro and nanostructures for refractive index and SERS-based optical label-free sensing. Nanophotonics 2015, 4, 419–436. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Heebner, J.E.; Boyd, R.W. Sensitive disk resonator photonic biosensor. Appl. Opt. 2001, 40, 5742–5747. [Google Scholar] [CrossRef]
- Luchansky, M.S.; Washburn, A.L.; Martin, T.A.; Iqbal, M.; Gunn, L.C.; Bailey, R.C. Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform. Biosens. Bioelectron. 2010, 26, 1283–1291. [Google Scholar] [CrossRef]
- Miller, B.L.; Bryan, M.R.; Steiner, D.J.; Cognetti, J.S. Design, manufacture, and testing of a silicon nitride ring resonator-based biosensing platform. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX; Fountain, A.W., Guicheteau, J.A., Howle, C.R., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 34. [Google Scholar] [CrossRef]
- Cognetti, J.S.; Steiner, D.J.; Abedin, M.; Bryan, M.R.; Shanahan, C.; Tokranova, N.; Young, E.; Klose, A.M.; Zavriyev, A.; Judy, N.; et al. Disposable photonics for cost-effective clinical bioassays: Application to COVID-19 antibody testing. Lab Chip 2021, 21, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Jin, C.E.; Bae, M.; Jang, Y.O.; Kim, J.Y.; Kim, S.-H.; Shin, Y. Detection of Coxiella burnetii Using Silicon Microring Resonator in Patient Blood Plasma. Micromachines 2019, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Qavi, A.J.; Meserve, K.; Aman, M.J.; Vu, H.; Zeitlin, L.; Dye, J.M.; Froude, J.W.; Leung, D.W.; Yang, L.; Holtsberg, F.W.; et al. Rapid detection of an Ebola biomarker with optical microring resonators. Cell Rep. Methods 2022, 2, 100234. [Google Scholar] [CrossRef]
- Zhu, H.; Dale, P.S.; Caldwell, C.W.; Fan, X. Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal. Chem. 2009, 81, 9858–9865. [Google Scholar] [CrossRef]
- Washburn, A.L.; Shia, W.W.; Lenkeit, K.A.; Lee, S.H.; Bailey, R.C. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays. Analyst 2016, 141, 5358–5365. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Taniguchi, T.; Hirowatari, A.; Ikeda, T.; Fukuyama, M.; Amemiya, Y.; Kuroda, A.; Yokoyama, S. Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G. Opt. Commun. 2016, 365, 16–23. [Google Scholar] [CrossRef]
- Arnfinnsdottir, N.B.; Chapman, C.A.; Bailey, R.C.; Aksnes, A.; Stokke, B.T. Impact of Silanization Parameters and Antibody Immobilization Strategy on Binding Capacity of Photonic Ring Resonators. Sensors 2020, 20, 3163. [Google Scholar] [CrossRef]
- Sheehan, P.E.; Whitman, L.J. Detection limits for nanoscale biosensors. Nano Lett. 2005, 5, 803–807. [Google Scholar] [CrossRef]
- Dinh, T.T.D.; González-Andrade, D.; Montesinos-Ballester, M.; Deniel, L.; Szelag, B.; Le Roux, X.; Cassan, E.; Marris-Morini, D.; Vivien, L.; Cheben, P.; et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot’s advantage. Opt. Lett. 2021, 46, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Liu, X.; Ren, Z.; Dong, B.; Xia, J.; Sun, H.; Lee, C.; Zhou, G. MEMS-Enabled On-Chip Computational Mid-Infrared Spectrometer Using Silicon Photonics. ACS Photonics 2022, 9, 2367–2377. [Google Scholar] [CrossRef]
- Sasaki, A.; Baba, T.; Iga, K. Put-In Microconnectors for Alignment-Free Coupling of Optical Fiber Arrays. IEEE Photonics Technol. Lett. 1992, 4, 908–911. [Google Scholar] [CrossRef]
- Nakazuru, K.; Asai, S.; Tsunoda, M.; Takahashi, N.; Matsubara, T. Development of optical multi-channel connector for rigid waveguide—Fiber optical interconnection. In Proceedings of the Electronic Components and Technology Conference, Orlando, FL, USA, 27–30 May 2014; pp. 1028–1032. [Google Scholar] [CrossRef]
- Mathai, S.; Rosenberg, P.K.; Panotopoulos, G.; Kurtz, D.; Childers, D.; Van Vaerenbergh, T.; Sun, P.; Hulme, J.; Rhim, J.; Seyedi, M.A.; et al. Detachable 1x8 single mode optical interface for DWDM microring silicon photonic transceivers. In Proceedings of the Optical Interconnects XX, San Francisco, CA, USA, 1–6 February 2020; Volume 11286, pp. 62–71. [Google Scholar] [CrossRef]
- Shin, H.; Jeong, S.; Lee, J.H.; Sun, W.; Choi, N.; Cho, I.J. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat. Commun. 2021, 12, 492. [Google Scholar] [CrossRef]
- Kundu, A.; McCoy, L.; Azim, N.; Nguyen, H.; Didier, C.M.; Ausaf, T.; Sharma, A.D.; Curley, J.L.; Moore, M.J.; Rajaraman, S. Fabrication and characterization of 3D printed, 3D microelectrode arrays for interfacing with a peripheral nerve-on-a-chip. ACS Biomater. Sci. Eng. 2021, 7, 3018–3029. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Lee, H.U.; Nag, S.; Blasiak, A.; Jin, Y.; Thakor, N.; Yang, I.H. Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform. ACS Chem. Neurosci. 2016, 7, 1317–1324. [Google Scholar] [CrossRef]
- Clements, I.P.; Millard, D.C.; Nicolini, A.M.; Preyer, A.J.; Grier, R.; Heckerling, A.; Blum, R.A.; Tyler, P.; McSweeney, K.M.; Lu, Y.-F.; et al. Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications. In Proceedings of the Clinical and Translational Neurophotonics, Neural Imaging and Sensing, and Optogenetics and Optical Manipulation, San Francisco, CA, USA, 13–18 February 2016; Volume 9690, pp. 246–255. [Google Scholar] [CrossRef]
- Inoue, K.I.; Takada, M.; Matsumoto, M. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat. Commun. 2015, 6, 8378. [Google Scholar] [CrossRef]
- Hoffman, L.; Subramanian, A.; Helin, P.; Du Bois, B.; Baets, R.; Van Dorpe, P.; Gielen, G.; Puers, R.; Braeken, D. Low loss CMOS-Compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications. IEEE Photonics J. 2016, 8, 2701211. [Google Scholar] [CrossRef]
- Shim, E.; Chen, Y.; Masmanidis, S.; Li, M. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications. Sci. Rep. 2016, 6, 22693. [Google Scholar] [CrossRef]
- Bolin, M.H.; Svennersten, K.; Nilsson, D.; Sawatdee, A.; Jager, E.W.H.; Richter-Dahlfors, A.; Berggren, M. Active Control of Epithelial Cell-Density Gradients Grown Along the Channel of an Organic Electrochemical Transistor. Adv. Mater. 2009, 21, 4379–4382. [Google Scholar] [CrossRef]
- Nguyen, T.N.H.; Horowitz, L.F.; Krilov, T.; Lockhart, E.; Kenerson, H.L.; Gujral, T.S.; Yeung, R.S.; Arroyo-Currás, N.; Folch, A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. Sci. Adv. 2024, 10, 5875. [Google Scholar] [CrossRef]
- Liu, Y.C.; Ansaryan, S.; Tan, J.; Broguiere, N.; Lorenzo-Martín, L.F.; Homicsko, K.; Coukos, G.; Lütolf, M.P.; Altug, H. Nanoplasmonic Single-Tumoroid Microarray for Real-Time Secretion Analysis. Adv. Sci. 2024, 11, 2401539. [Google Scholar] [CrossRef]
- Weltin, A.; Hammer, S.; Noor, F.; Kaminski, Y.; Kieninger, J.; Urban, G.A. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Biosens. Bioelectron. 2017, 87, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip 2022, 22, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Cognetti, J.S.; Moen, M.T.; Brewer, M.G.; Bryan, M.R.; Tice, J.D.; McGrath, J.L.; Miller, B.L. A Photonic Biosensor-Integrated Tissue Chip Platform for Real-Time Sensing of Lung Epithelial Inflammatory Markers. Lab Chip 2023, 23, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Thompson, I.A.P.; Newman, S.S.; Hein, L.A.; Lian, X.; Fu, K.X.; Pan, J.; Eisenstein, M.; Soh, H.T. Real-Time Spatiotemporal Measurement of Extracellular Signaling Molecules Using an Aptamer Switch-Conjugated Hydrogel Matrix. Adv. Mater. 2024, 36, 2306704. [Google Scholar] [CrossRef]
- Kuo, A.P.; Bhattacharjee, N.; Lee, Y.S.; Castro, K.; Kim, Y.T.; Folch, A. High-Precision Stereolithography of Biomicrofluidic Devices. Adv. Mater. Technol. 2019, 4, 1800395. [Google Scholar] [CrossRef]
- Karamzadeh, V.; Shen, M.L.; Shafique, H.; Lussier, F.; Juncker, D. Nanoporous, Gas Permeable PEGDA Ink for 3D Printing Organ-on-a-Chip Devices. Adv. Funct. Mater. 2024, 34, 2315035. [Google Scholar] [CrossRef]
- Ficili, I.; Giacobbe, M.; Tricomi, G.; Puliafito, A. From Sensors to Data Intelligence: Leveraging IoT, Cloud, and Edge Computing with AI. Sensors 2025, 25, 1763. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cognetti, J.S.; Miller, B.L. Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing. Sensors 2025, 25, 5153. https://doi.org/10.3390/s25165153
Cognetti JS, Miller BL. Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing. Sensors. 2025; 25(16):5153. https://doi.org/10.3390/s25165153
Chicago/Turabian StyleCognetti, John S., and Benjamin L. Miller. 2025. "Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing" Sensors 25, no. 16: 5153. https://doi.org/10.3390/s25165153
APA StyleCognetti, J. S., & Miller, B. L. (2025). Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing. Sensors, 25(16), 5153. https://doi.org/10.3390/s25165153