Scatterometry-Based Monitoring of Laser-Induced Periodic Surface Structures on Stainless Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Stainless Steel Substrates
2.2. LIPSS Structuring
2.3. Topography Characterization
2.4. Monitoring System
3. Results and Discussion
3.1. Evolution of LIPSS Topography
3.2. LIPSS Characterization via Scatterometry
4. Conclusions
- Not only was the double-sickle shape characteristic of LSFL detected in the CCD images, but also the formation of a cloud overlapping, and eventually, dominating over the double sickle was observed. This allows for the qualitative estimation of the type of structures present on the surface.
- The estimated periods presented an average error of 5.1% up to 40 scans, while the range of periods had an average error of 22.7% for 6 to 26 scans. These ranges are characterized by clearly defined first DO in the CCD images.
- By analyzing the relationship between the opening angle and the isotropy index, a correlation was observed between these two parameters. This made it possible to establish a threshold for the opening angle that indicates either the predominance of regular LSFL or high levels of texture disorder due to the presence of multiple sub-structures.
- Using three fits correlating the intensities of the DO as function of structure height for different regimes, it was possible to estimate LIPSS heights in a range from 25 nm to 420 nm, with an average error of 11.4%. Furthermore, the evaluation of this approach indicates a decreasing error with increasing LIPSS heights.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J. Dynamics of the Formation of Laser-Induced Periodic Surface Structures (LIPSS) upon Femtosecond Two-Color Double-Pulse Irradiation of Metals, Semiconductors, and Dielectrics. Appl. Surf. Sci. 2016, 374, 331–338. [Google Scholar] [CrossRef]
- Heitz, J.; Reisinger, B.; Fahrner, M.; Romanin, C.; Siegel, J.; Svorcik, V. Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces. In Proceedings of the 2012 14th International Conference on Transparent Optical Networks (ICTON), Coventry, UK, 2–5 July 2012; pp. 1–4. [Google Scholar]
- Vorobyev, A.Y.; Guo, C. Antireflection Effect of Femtosecond Laser-Induced Periodic Surface Structures on Silicon. Opt. Express 2011, 19, A1031. [Google Scholar] [CrossRef] [PubMed]
- Knüttel, T. Laser Texturing of Surfaces in Thin-Film Silicon Photovoltaics—A Comparison of Potential Processes. J. Laser Micro/Nanoeng. 2013, 8, 222–229. [Google Scholar] [CrossRef]
- Kirner, S.V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; et al. Mimicking Bug-like Surface Structures and Their Fluid Transport Produced by Ultrashort Laser Pulse Irradiation of Steel. Appl. Phys. A 2017, 123, 754. [Google Scholar] [CrossRef]
- Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J. Femtosecond Laser-Induced Periodic Surface Structures on Steel and Titanium Alloy for Tribological Applications. Appl. Phys. A 2014, 117, 103–110. [Google Scholar] [CrossRef]
- Schweitzer, L.; Schoon, J.; Bläß, N.; Huesker, K.; Neufend, J.V.; Siemens, N.; Bekeschus, S.; Schlüter, R.; Schneider, P.; Uhlmann, E.; et al. Ultraviolet Laser Induced Periodic Surface Structures Positively Influence Osteogenic Activity on Titanium Alloys. Front. Bioeng. Biotechnol. 2024, 12, 1462232. [Google Scholar] [CrossRef]
- Khuzhakulov, Z.; Kylychbekov, S.; Allamyradov, Y.; Majidov, I.; Ben Yosef, J.; Er, A.Y.; Kitchens, C.; Banga, S.; Badarudeen, S.; Er, A.O. Formation of Picosecond Laser-Induced Periodic Surface Structures on Steel for Knee Arthroplasty Prosthetics. Front. Met. Alloys 2023, 1, 1090104. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond Laser-Induced Periodic Surface Structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar] [CrossRef]
- Song, L.; Wang, S.; Tao, H.; Lin, J. Effects of Ablation Regimes on the Formation and Evolution of Femtosecond Laser-Induced Periodic Structures on Titanium. Front. Phys. 2022, 10, 861098. [Google Scholar] [CrossRef]
- Maragkaki, S.; Tsibidis, G.D.; Haizer, L.; Pápa, Z.; Flender, R.; Kiss, B.; Márton, Z.; Stratakis, E. Tailoring Surface Topographies on Solids with Mid-IR Femtosecond Laser Pulses. Appl. Surf. Sci. 2023, 612, 155879. [Google Scholar] [CrossRef]
- Bonse, J. Quo Vadis LIPSS?—Recent and Future Trends on Laser-Induced Periodic Surface Structures. Nanomaterials 2020, 10, 1950. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Liang, C.; Wang, H. Ultra-Broadband Enhanced Absorption of Metal Surfaces Structured by Femtosecond Laser Pulses. Opt. Express 2008, 16, 11259–11265. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Griepentrog, M.; Spaltmann, D.; Krüger, J. Femtosecond Laser Texturing of Surfaces for Tribological Applications. Materials 2018, 11, 801. [Google Scholar] [CrossRef]
- Velli, M.-C.; Tsibidis, G.D.; Mimidis, A.; Skoulas, E.; Pantazis, Y.; Stratakis, E. Predictive Modeling Approaches in Laser-Based Material Processing. J. Appl. Phys. 2020, 128, 183102. [Google Scholar] [CrossRef]
- Fauchet, P.M.; Siegman, A.E. Surface Ripples on Silicon and Gallium Arsenide under Picosecond Laser Illumination. Appl. Phys. Lett. 1982, 40, 824–826. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Calaon, M.; Madsen, M.H.; Weirich, J.; Hansen, H.N.; Tosello, G.; Hansen, P.E.; Garnaes, J.; Tang, P.T. Replication Fidelity Assessment of Large Area Sub-Μm Structured Polymer Surfaces Using Scatterometry. Surf. Topogr. Metrol. Prop. 2015, 3, 045005. [Google Scholar] [CrossRef]
- Petrik, P.; Kumar, N.; Juhasz, G.; Major, C.; Fodor, B.; Agocs, E.; Lohner, T.; Pereira, S.F.; Urbach, H.P.; Fried, M. Optical Characterization of Macro-, Micro- and Nanostructures Using Polarized Light. J. Phys. Conf. Ser. 2014, 558, 012008. [Google Scholar] [CrossRef]
- Krogstrup, P.; Hannibal Madsen, M.; Hu, W.; Kozu, M.; Nakata, Y.; Nygård, J.; Takahasi, M.; Feidenhans’l, R. In-Situ X-Ray Characterization of Wurtzite Formation in GaAs Nanowires. Appl. Phys. Lett. 2012, 100, 093103. [Google Scholar] [CrossRef]
- Agocs, E.; Bodermann, B.; Burger, S.; Dai, G.; Endres, J.; Hansen, P.-E.; Nielson, L.; Madsen, M.H.; Heidenreich, S.; Krumrey, M.; et al. Scatterometry Reference Standards to Improve Tool Matching and Traceability in Lithographical Nanomanufacturing. In Proceedings of the Nanoengineering: Fabrication, Properties, Optics, and Devices XII, San Diego, CA, USA, 20 August 2015; Volume 9556, pp. 153–164. [Google Scholar]
- Michalek, A.; Jwad, T.; Penchev, P.; See, T.L.; Dimov, S. Inline LIPSS Monitoring Method Employing Light Diffraction. J. Micro Nano-Manuf. 2020, 8, 011002. [Google Scholar] [CrossRef]
- Schröder, N.; Fischer, C.; Soldera, M.; Bouchard, F.; Voisiat, B.; Fabián Lasagni, A. Approach for Monitoring the Topography of Laser-Induced Periodic Surface Structures Using a Diffraction-Based Measurement Method. Mater. Lett. 2022, 324, 132794. [Google Scholar] [CrossRef]
- Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J. Femtosecond Diffraction Dynamics of Laser-Induced Periodic Surface Structures on Fused Silica. Appl. Phys. Lett. 2013, 102, 054102. [Google Scholar] [CrossRef]
- Kafka, K.R.P.; Austin, D.R.; Li, H.; Yi, A.Y.; Cheng, J.; Chowdhury, E.A. Time-Resolved Measurement of Single Pulse Femtosecond Laser-Induced Periodic Surface Structure Formation Induced by a Pre-Fabricated Surface Groove. Opt. Express 2015, 23, 19432–19441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, Y.; Lam, B.; Guo, C. Real-Time in Situ Study of Femtosecond-Laser-Induced Periodic Structures on Metals by Linear and Nonlinear Optics. Opt. Express 2017, 25, 20323–20331. [Google Scholar] [CrossRef]
- Lübcke, A.; Pápa, Z.; Schnürer, M. Monitoring of Evolving Laser Induced Periodic Surface Structures. Appl. Sci. 2019, 9, 3636. [Google Scholar] [CrossRef]
- Huynh, T.T.D.; Semmar, N. In Situ Probing of Pulsed Laser Melting and Laser-Induced Periodic Surface Structures Formation by Dynamic Reflectivity. Surf. Topogr. Metrol. Prop. 2017, 5, 035003. [Google Scholar] [CrossRef]
- Aguilar, A.; Mauclair, C.; Faure, N.; Colombier, J.-P.; Stoian, R. In-Situ High-Resolution Visualization of Laser-Induced Periodic Nanostructures Driven by Optical Feedback. Sci. Rep. 2017, 7, 16509. [Google Scholar] [CrossRef]
- Bartkowiak, T.; Berglund, J.; Brown, C.A. Multiscale Characterizations of Surface Anisotropies. Materials 2020, 13, 3028. [Google Scholar] [CrossRef]
- Jacobs, T.; Junge, T.; Pastewka, L. Quantitative Characterization of Surface Topography Using Spectral Analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Walczak, M.; Szala, M.; Okuniewski, W. Assessment of Corrosion Resistance and Hardness of Shot Peened X5CrNi18-10 Steel. Materials 2022, 15, 9000. [Google Scholar] [CrossRef]
- Kiss, I.; Alexa, V. Study on Deformation Behavior of Non–Hardenable Austenitic Stainless Steel (Grade X5CrNi18–10) by Hot Torsion Tests. Teh. Glas. 2020, 14, 396–402. [Google Scholar] [CrossRef]
- Schille, J.; Schneider, L.; Streek, A.; Kloetzer, S.; Loeschner, U. High-Throughput Machining Using a High-Average Power Ultrashort Pulse Laser and High-Speed Polygon Scanner. Opt. Eng. 2016, 55, 096109. [Google Scholar] [CrossRef]
- Baumann, R.; Zschach, L.G.; Spitz, F.; Ränke, F.; Lasagni, A. Enhanced Corrosion Resistance of 2024-T351 Aluminum Alloy through High-Speed Laser Texturing Using a Polygon Scanner. Mater. Lett. 2025, 398, 138979. [Google Scholar] [CrossRef]
- Fox, T.; Mücklich, F. Development and Validation of a Calculation Routine for the Precise Determination of Pulse Overlap and Accumulated Fluence in Pulsed Laser Surface Treatment. Adv. Eng. Mater. 2023, 25, 2201021. [Google Scholar] [CrossRef]
- Teutoburg-Weiss, S.; Voisiat, B.; Soldera, M.; Lasagni, A.F. Development of a Monitoring Strategy for Laser-Textured Metallic Surfaces Using a Diffractive Approach. Materials 2020, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.E.; Pfisterer, R.N. Understanding Diffraction Grating Behavior: Including Conical Diffraction and Rayleigh Anomalies from Transmission Gratings. Opt. Eng. 2019, 58, 087105. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photonics Rev. 2020, 14, 2000215. [Google Scholar] [CrossRef]
- ISO 25178−2; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Todhunter, L.; Leach, R.; Lawes, S.; Harris, P.; Blateyron, F. Mathematical Approach to the Validation of Field Surface Texture Parameter Software. Surf. Topogr. Metrol. Prop. 2020, 8, 015010. [Google Scholar] [CrossRef]
- Indrišiūnas, S.; Svirplys, E.; Gedvilas, M. Large-Area Fabrication of LIPSS for Wetting Control Using Multi-Parallel Femtosecond Laser Processing. Materials 2022, 15, 5534. [Google Scholar] [CrossRef]
- Harvey, J.E.; Pfisterer, R.N. Understanding Diffraction Grating Behavior, Part II: Parametric Diffraction Efficiency of Sinusoidal Reflection (Holographic) Gratings. Opt. Eng. 2020, 59, 017103. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Ten Open Questions about Laser-Induced Periodic Surface Structures. Nanomaterials 2021, 11, 3326. [Google Scholar] [CrossRef]
- Bonse, J.; Munz, M.; Sturm, H. Structure Formation on the Surface of Indium Phosphide Irradiated by Femtosecond Laser Pulses. J. Appl. Phys. 2004, 97, 013538. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Derrien, T.J.-Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-Speed Manufacturing of Highly Regular Femtosecond Laser-Induced Periodic Surface Structures: Physical Origin of Regularity. Sci. Rep. 2017, 7, 8485. [Google Scholar] [CrossRef]
- Schröder, N.; Fischer, C.; Soldera, M.; Voisiat, B.; Lasagni, A.F. Diffraction-Based Strategy for Monitoring Topographical Features Fabricated by Direct Laser Interference Patterning. Adv. Eng. Mater. 2023, 25, 2201889. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götte, A.; Sallese, M.; Ränke, F.; Voisiat, B.; Lasagni, A.F.; Soldera, M. Scatterometry-Based Monitoring of Laser-Induced Periodic Surface Structures on Stainless Steel. Sensors 2025, 25, 5031. https://doi.org/10.3390/s25165031
Götte A, Sallese M, Ränke F, Voisiat B, Lasagni AF, Soldera M. Scatterometry-Based Monitoring of Laser-Induced Periodic Surface Structures on Stainless Steel. Sensors. 2025; 25(16):5031. https://doi.org/10.3390/s25165031
Chicago/Turabian StyleGötte, Agustín, Marcelo Sallese, Fabian Ränke, Bogdan Voisiat, Andrés Fabián Lasagni, and Marcos Soldera. 2025. "Scatterometry-Based Monitoring of Laser-Induced Periodic Surface Structures on Stainless Steel" Sensors 25, no. 16: 5031. https://doi.org/10.3390/s25165031
APA StyleGötte, A., Sallese, M., Ränke, F., Voisiat, B., Lasagni, A. F., & Soldera, M. (2025). Scatterometry-Based Monitoring of Laser-Induced Periodic Surface Structures on Stainless Steel. Sensors, 25(16), 5031. https://doi.org/10.3390/s25165031