The Design and Validation of an Intensity-Modulated Multipoint Fiber-Optic Liquid-Level Sensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Sensing Principles
2.3. Theoretical Modeling
2.4. Parameters for Model Configuration
3. Experimental Setup
Spectral Response of Sensor
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Bao, M.; Chen, Y.; Ye, H.; Fan, J.; Shi, G. Accuracy characterization of Shack–Hartmann sensor with residual error removal in spherical wavefront calibration. Light Adv. Manuf. 2024, 4, 393–403. [Google Scholar] [CrossRef]
- Ngiejungbwen, L.A.; Hamdaoui, H.; Chen, M.-Y. Polymer optical fiber and fiber Bragg grating sensors for biomedical engineering Applications: A comprehensive review. Opt. Laser Technol. 2024, 170, 110187. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, Y.; Ghaffar, A.; Liu, W. A narrow groove structure based plasmonic refractive Index sensor. IEEE Access 2020, 8, 97289–97295. [Google Scholar] [CrossRef]
- Ma, P.; Yao, T.; Liu, W.; Pan, Z.; Chen, Y.; Yang, H.; Chen, Z.; Wang, Z.; Zhou, P.; Chen, J. A 7-kW narrow-linewidth fiber amplifier assisted by optimizing the refractive index of the large-mode-area active fiber. High Power Laser Sci. Eng. 2024, 12, e67. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Hu, P.; Fu, H.; Yang, H.; Yang, R.; Dong, Y.; Zou, L.; Tan, J. Large-range displacement measurement in narrow space scenarios: Fiber microprobe sensor with subnanometer accuracy. Photonics Res. 2024, 12, 1877–1889. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, Y.; Chen, X.; Zhao, D.; Cheng, S.; Zhu, R.; Sun, L.; Cui, Y.; Sun, P.; Gao, Y.; et al. Perforated piezoresistive film-based flexible bidirectional strain sensors for large bending deformation detection and health monitoring of glass fiber-reinforced polymers. Compos. Part B Eng. 2025, 293, 112111. [Google Scholar] [CrossRef]
- Ghaffar, A.; Mehdi, M.; Hussain, S.; Hussian, N.; JianHui, S.A.S.; Pang, J.; Liu, W. The coupling of scattered-bend loss in POF based the displacement measurement sensor. Sens. Bio-Sens. Res. 2020, 29, 100351. [Google Scholar] [CrossRef]
- Shi, J.; Ghaffar, A.; Li, Y.; Mehdi, I.; Mehdi, R.; ASoomro, F.; Hussain, S.; Mehdi, M.; Li, Q.; Li, Z. Dynamic Rotational Sensor Using Polymer Optical Fiber for Robot Movement Assessment Based on Intensity Variation. Polymers 2022, 14, 5167. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, Q.; Mehdi, M.; Hussain, S.; Jia, Y.-M.; Onyekwena, C.C. Analysis of Force Sensor Using Polymer Optical Fiber Based on Twisting Structure. IEEE Sens. J. 2022, 22, 23960–23967. [Google Scholar] [CrossRef]
- Hu, Y.; Ghaffar, A.; Hou, Y.; Liu, W.; Li, F.; Wang, J. A Micro Structure POF Relative Humidity Sensor Modified With Agarose Based on Surface Plasmon Resonance and Evanescent Wave Loss. Photonic Sens. 2021, 11, 392–401. [Google Scholar] [CrossRef]
- Haider, M.S.U.K.; Chen, C.; Ghaffar, A.; Noor, L.U.; Liu, M.; Hussain, S.; Arman, B.; Alathbah, M. Smartphone-based optical fiber sensor for refractive index sensing using POF. Sens. Actuators A Phys. 2025, 385, 116321. [Google Scholar] [CrossRef]
- Ghaffar, A.; Ru, F.; Liu, J.; Chen, G.Y.; Ni, J.; Liu, J.; Hussian, S.; Yu, J.; Das, B.; Mehdi, M. High pressure sensor based on intensity-variation using polymer optical fiber. Sci. Rep. 2024, 14, 18604. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.; Peng, G.-D.; Webb, D.J. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt. Express 2015, 23, 6058–6072. [Google Scholar] [CrossRef]
- Dong, Y.; Li, W.; Zhang, J.; Luo, W.; Fu, H.; Xing, X.; Hu, P.; Dong, Y.; Tan, J. High-speed PGC demodulation model and method with subnanometer displacement resolution in a fiber-optic micro-probe laser interferometer. Photonics Res. 2024, 12, 921–931. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, L.; Qin, Y.; Shen, H.; Ji, B. High-precision FBG-based sensor for soil settlement monitoring: A comparative study with magnetic settlement gauges and PIV technique. Sens. Actuators A Phys. 2024, 366, 114935. [Google Scholar] [CrossRef]
- Ghaffar, A.; Hussain, S.; Musavi, S.H.A.; Mehdi, M.; Zalkepali, N.U.H.H.; Lin, J. A Low-Cost Relative Humidity Sensor Using Polymer Optical Fiber Based on Intensity Variation. IEEE Sens. J. 2024, 24, 7816–7823. [Google Scholar] [CrossRef]
- Lin, X.; Ren, L.; Xu, Y.; Chen, N.; Ju, H.; Liang, J.; He, Z.; Qu, E.; Hu, B.; Li, Y. Low-cost multipoint liquid-level sensor with plastic optical fiber. IEEE Photonics Technol. Lett. 2014, 26, 1613–1616. [Google Scholar] [CrossRef]
- Lomer, M.; Arrue, J.; Jauregui, C.; Aiestaran, P.; Zubia, J.; López-Higuera, J.M. Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor. Sens. Actuators A Phys. 2007, 137, 68–73. [Google Scholar] [CrossRef]
- Antonio-Lopez, J.E.; Sanchez-Mondragon, J.J.; LiKamWa, P.; May-Arrioja, D.A. Fiber-optic sensor for liquid level measurement. Opt. Lett. 2011, 36, 3425–3427. [Google Scholar] [CrossRef]
- Marick, S.; Bera, S.K.; Bera, S.C. A float type liquid level measuring system using a modified inductive transducer. Sens. Transducers 2014, 182, 111–118. [Google Scholar]
- Esmaili, P.; Cavedo, F.; Norgia, M. Characterization of pressure sensor for liquid-level measurement in sloshing condition. IEEE Trans. Instrum. Meas. 2019, 69, 4379–4386. [Google Scholar] [CrossRef]
- Astapov, V.; Kozlova, I. Hydrostatic fiber-optic liquid level sensor with a position-sensitive detector. Meas. Tech. 2021, 63, 974–979. [Google Scholar] [CrossRef]
- Pereira, T.S.R.; de Carvalho, T.P.; Mendes, T.A.; Formiga, K.T.M. Evaluation of water level in flowing channels using ultrasonic sensors. Sustainability 2022, 14, 5512. [Google Scholar] [CrossRef]
- Yorke, T.H.; Oberg, K.A. Measuring river velocity and discharge with acoustic Doppler profilers. Flow Meas. Instrum. 2002, 13, 191–195. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Huang, K.; Yan, K.; Chen, H. A Review of Non-Contact Water Level Measurement Based on Computer Vision and Radar Technology. Water 2023, 15, 3233. [Google Scholar] [CrossRef]
- Islam, T.; Maurya, O.P.; Khan, A.U. Design and fabrication of fringing field capacitive sensor for non-contact liquid level measurement. IEEE Sens. J. 2021, 21, 24812–24819. [Google Scholar] [CrossRef]
- Qiao, Y.; Lü, J.; Wang, T.; Liu, K.; Zhang, B.; Snoussi, H. A multihead attention self-supervised representation model for industrial sensors anomaly detection. IEEE Trans. Ind. Inform. 2023, 20, 2190–2199. [Google Scholar] [CrossRef]
- Rajamani, A.S.; Divagar, M.; Sai, V.V.R. Plastic fiber optic sensor for continuous liquid level monitoring. Sens. Actuators A Phys. 2019, 296, 192–199. [Google Scholar] [CrossRef]
- Haider, M.S.U.K.; Chen, C.; Ghaffar, A.; Hussain, S.; Mehdi, M.; Noor, L.U.; Kalhoro, S.A.; Liu, M. Simultaneous measurement of liquid level and R.I. sensor using POF based on twisted structure. Sci. Rep. 2025, 15, 1163. [Google Scholar]
- He, R.J.; Teng, C.; Kumar, S.; Marques, C.; Min, R. Polymer Optical Fiber Liquid Level Sensor: A Review. IEEE Sens. J. 2022, 22, 1081–1091. [Google Scholar] [CrossRef]
- Jing, N.; Teng, C.; Zheng, J.; Wang, G.; Chen, Y.; Wang, Z. A Liquid Level Sensor Based on a Race-Track Helical Plastic Optical Fiber. IEEE Photonics Technol. Lett. 2017, 29, 158–160. [Google Scholar] [CrossRef]
- Haider, M.S.U.K.; Chen, C.; Ghaffar, A.; Alshehri, H.M.; Noor, L.U.; Liu, M.; Hussain, S. Portable Optical Fiber Sensor for Continuous Liquid Level Sensing Using Commercially Available POF. IEEE Sens. J. 2025, 25, 4582–4589. [Google Scholar] [CrossRef]
- Pires-Junior, R.; Leal-Junior, A. Ensemble learning application in multiplexed optical fibser sensor system for liquid level assessment. Measurement 2023, 211, 112628. [Google Scholar] [CrossRef]
- Galarza, M.; Perez-Herrera, R.A.; Leandro, D.; Judez, A.; López-Amo, M. Spatial-frequency multiplexing of high-sensitivity liquid level sensors based on multimode interference micro-fibers. Sens. Actuators A Phys. 2020, 307, 111985. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Jin, B.; Wang, Y.; Zhang, M. Quasi-Distributed Optical Fiber Sensor for Liquid-Level Measurement. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Y.; Zhang, Y.; Hu, Y.; Zhang, L.; Gao, X.; Zhang, H.; Liu, W. A Cost-effective quasi-distributed liquid leakage sensor based on the polymer optical fiber and flexible lamp belt with LEDs. Opt. Express 2018, 26, 10152–10161. [Google Scholar] [CrossRef]
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2010, 20, 013002. [Google Scholar] [CrossRef]
- Marcuse, D. Theory of Dielectric Optical Waveguides; Elsevier: London, UK, 2013. [Google Scholar]
- Zhou, G.; Liu, J.; Gao, K.; Liu, R.; Tang, Y.; Cai, A.; Zhou, X.; Xu, J.; Xie, X. A Coupling Method for the Stability of Reflectors and Support Structure in an ALB Optical-Mechanical System. Remote Sens. 2024, 17, 60. [Google Scholar] [CrossRef]
- Marcuse, D. Derivation of coupled power equations. Bell Syst. Tech. J. 1972, 51, 229–237. [Google Scholar] [CrossRef]
- Rowe, H.E. Propagation in one-dimensional random media. IEEE Trans. Microw. Theory Tech. 1971, 19, 73–80. [Google Scholar] [CrossRef]
- Marcuse, D. Coupled power equations for backward waves. IEEE Trans. Microw. Theory Tech. 1972, 20, 541–546. [Google Scholar] [CrossRef]
- Specification Sheet of High-Performance Plastic Optical Fiber; Mitsubishi Rayon Co., Ltd.: Tokyo, Japan, 2001.
- Hussain, S.; Ghaffar, A.; Kazi, M.A.; Alshehri, H.M.; Jianping, Y.; Abbasi, S.J.; Mehdi, I.; Shah, I.A.; Hakro, M.; Ali, A. POF helical structure: A non-contact approach for wide-range force measurements based on the coupling method. Meas. Sci. Technol. 2025, 36, 0335003. [Google Scholar] [CrossRef]
No. | y= | Sensitivity | R2 | Resolution |
---|---|---|---|---|
Sensor-1 | −0.298x + 3.927 | 0.2726 μW/cm | 0.9979 | 3.7 μm |
Sensor-2 | −0.188x + 2.4694 | 0.1715 μW/cm | 0.9946 | 5.8 μm |
Sensor-3 | −0.138x + 1.7823 | 0.1281 μW/cm | 0.9933 | 7.8 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaffar, A.; Niu, S.; Mehdi, M.; Hussain, S.; Khan, A.M.; Abro, Z.A.; Kumail Haider, M.S.U.; Chang, Z.; Chen, X.; Ali, S. The Design and Validation of an Intensity-Modulated Multipoint Fiber-Optic Liquid-Level Sensor. Sensors 2025, 25, 5009. https://doi.org/10.3390/s25165009
Ghaffar A, Niu S, Mehdi M, Hussain S, Khan AM, Abro ZA, Kumail Haider MSU, Chang Z, Chen X, Ali S. The Design and Validation of an Intensity-Modulated Multipoint Fiber-Optic Liquid-Level Sensor. Sensors. 2025; 25(16):5009. https://doi.org/10.3390/s25165009
Chicago/Turabian StyleGhaffar, Abdul, Sanku Niu, Mujahid Mehdi, Sadam Hussain, Ahmed Muddassir Khan, Zamir Ahmed Abro, Muhammad Saleh Urf Kumail Haider, Zhanyou Chang, Xiaoyu Chen, and Salamat Ali. 2025. "The Design and Validation of an Intensity-Modulated Multipoint Fiber-Optic Liquid-Level Sensor" Sensors 25, no. 16: 5009. https://doi.org/10.3390/s25165009
APA StyleGhaffar, A., Niu, S., Mehdi, M., Hussain, S., Khan, A. M., Abro, Z. A., Kumail Haider, M. S. U., Chang, Z., Chen, X., & Ali, S. (2025). The Design and Validation of an Intensity-Modulated Multipoint Fiber-Optic Liquid-Level Sensor. Sensors, 25(16), 5009. https://doi.org/10.3390/s25165009