Particle Imaging Velocimetry with Color-Encoded Illumination: A Review
Abstract
1. Introduction
2. Fundamentals
2.1. Particle Image Velocimetry (PIV)
2.2. Particle Tracking Velocimetry (PTV)
2.3. Fundamentals of Color-Coding
3. LED-Based Illumination Systems
3.1. Technical Principles
3.2. Application Cases
3.3. Merit–Demerit Analysis for LED-Based Illumination Systems
4. Projector-Based Illumination Approaches
4.1. Working Mechanism
4.2. Typical Implementation Examples of Projector-Based Illumination Approaches
4.3. Merit–Demerit Analysis for Projector-Based Illumination Approaches
5. Laser-Based Illumination Architectures
5.1. Fundamental Theories
5.2. The Typical Implementation Examples for Laser-Based Illumination Architectures
5.3. Feature Analysis
6. Comparative Analysis and Future Trends
6.1. Performance Comparison for Variant Illumiantion Strategies
6.2. Emerging Directions
Author Contributions
Funding
Conflicts of Interest
References
- Adrian, R.J. Multi-Point Optical Measurements of Simultaneous Vectors in Unsteady Flow—A Review. Int. J. Heat Fluid Flow 1986, 7, 127–145. [Google Scholar] [CrossRef]
- Particulate Two-Phase Flow; Roco, M.C., Ed.; Butterworth-Heinemann Series in Chemical Engineering; Butterworth-Heinemann: Boston, MA, USA, 1993; ISBN 978-0-7506-9275-5. Available online: https://www.amazon.com/Particulate-Two-Phase-Butterworth-Heinemann-Chemical-Engineering/dp/0750692758 (accessed on 5 June 2025).
- Hasinoff, S.W.; Kutulakos, K.N. Photo-Consistent Reconstruction of Semitransparent Scenes by Density-Sheet Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Ihrke, I.; Magnor, M. Image-Based Tomographic Reconstruction of Flames. In Proceedings of the ACM SIGGRAPH 2004 Sketches on—SIGGRAPH ’04, Los Angeles, CA, USA, 8–12 August 2004; ACM Press: Los Angeles, CA, USA, 2004; p. 16. [Google Scholar]
- Gu, J.; Nayar, S.K.; Grinspun, E.; Belhumeur, P.N.; Ramamoorthi, R. Compressive Structured Light for Recovering Inhomogeneous Participating Media. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.; Einarsson, P.; Debevec, P. Acquisition of Time-Varying Participating Media. ACM Trans. Graph. 2005, 24, 812–815. [Google Scholar] [CrossRef]
- Gregson, J.; Krimerman, M.; Hullin, M.B.; Heidrich, W. Stochastic Tomography and Its Applications in 3D Imaging of Mixing Fluids. ACM Trans. Graph. 2012, 31, 52. [Google Scholar] [CrossRef]
- Miotto, G.; Thiemann, K.; Rombach, M.; Zengerle, R.; Kartmann, S. Holographic PIV/PTV for Nano Flow Rates–A Study in the 70 to 200 nL/Min Range. Biomed. Eng. Biomed. Tech. 2023, 68, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Vijayananda, V. Examination of Flow Patterns During Droplet Formation and in Venous Valve Mimic Using μ-PIV. Master’s Thesis, San Jose State University, San Jose, CA, USA, 2021. [Google Scholar]
- Chen, H.; Samaee, M.; Tree, M.; Dasi, L.; Yoganathan, A. Hemodynamics of the VenusP Valve SystemTM—An in Vitro Study. Front. Med. Technol. 2024, 6, 1376649. [Google Scholar] [CrossRef]
- Tada, H.; Uehara, S.; Chang, C.-H.; Yano, K.; Sato, T. Effect of Nanosecond Pulsed Currents on Directions of Cell Elongation and Migration through Time-Lapse Analysis. Int. J. Mol. Sci. 2023, 24, 3826. [Google Scholar] [CrossRef]
- Okamoto, K.; Nishio, S.; Saga, T.; Kobayashi, T. Standard Images for Particle-Image Velocimetry. Meas. Sci. Technol. 2000, 11, 685–691. [Google Scholar] [CrossRef]
- Adrian, R.J. Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry vs Particle Image Velocimetry. Appl. Opt. 1984, 23, 1690. [Google Scholar] [CrossRef]
- Schlatter, P.; Örlü, R. Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers. J. Fluid Mech. 2010, 659, 116–126. [Google Scholar] [CrossRef]
- Kowalczyk, M. Laser Speckle Velocimetry; Pluta, M., Jabczynski, J.K., Szyjer, M., Eds.; Proc. SPIE 2729; Optical Velocimetry: Warsaw, Poland, 1996; pp. 139–145. [Google Scholar] [CrossRef]
- Adrian, R.J. Particle-Imaging Techniques for Experimental Fluid Mechanics. Annu. Rev. Fluid Mech. 1991, 23, 261–304. [Google Scholar] [CrossRef]
- Zachos, A.; Kaiser, M.; Merzkirch, W. PIV Measurements in Multiphase Flow with Nominally High Concentration of the Solid Phase. Exp. Fluids 1996, 20, 229–231. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Ortiz-Villafuerte, J.; Schmidl, W.D. Three-Dimensional Measurements of Single Bubble Dynamics in a Small Diameter Pipe Using Stereoscopic Particle Image Velocimetry. Int. J. Multiph. Flow 2001, 27, 817–842. [Google Scholar] [CrossRef]
- Westerweel, J. Fundamentals of Digital Particle Image Velocimetry. Meas. Sci. Technol. 1997, 8, 1379–1392. [Google Scholar] [CrossRef]
- Mikheev, A.V.; Zubtsov, V.M. Enhanced Particle-Tracking Velocimetry (EPTV) with a Combined Two-Component Pair-Matching Algorithm. Meas. Sci. Technol. 2008, 19, 085401. [Google Scholar] [CrossRef]
- Ruhnau, P.; Guetter, C.; Putze, T.; Schnörr, C. A Variational Approach for Particle Tracking Velocimetry. Meas. Sci. Technol. 2005, 16, 1449–1458. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Canaan, R.E. Full-Field Bubbly Flow Velocity Measurements Using a Multiframe Particle Tracking Technique. Exp. Fluids 1991, 12, 49–60. [Google Scholar] [CrossRef]
- Duda, D.; La Mantia, M.; Rotter, M.; Skrbek, L. On the Visualization of Thermal Counterflow of He II Past a Circular Cylinder. J. Low Temp. Phys. 2014, 175, 331–338. [Google Scholar] [CrossRef]
- Lawson, N.J.; Finnis, M.V.; Tatum, J.A.; Harrison, G.M. Combined Stereoscopic Particle Image Velocimetry and Line Integral Convolution Methods: Application to a Sphere Sedimenting near a Wall in a Non-Newtonian Fluid. J. Vis. 2005, 8, 261–268. [Google Scholar] [CrossRef]
- Kähler, C.J.; Kompenhans, J. Fundamentals of Multiple Plane Stereo Particle Image Velocimetry. Exp. Fluids 2000, 29, S070–S077. [Google Scholar] [CrossRef]
- Soloff, S.M.; Adrian, R.J.; Liu, Z.-C. Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry. Meas. Sci. Technol. 1997, 8, 1441–1454. [Google Scholar] [CrossRef]
- Scarano, F. Tomographic PIV: Principles and Practice. Meas. Sci. Technol. 2013, 24, 012001. [Google Scholar] [CrossRef]
- Yu, T.; Cai, W. Simultaneous Reconstruction of Temperature and Velocity Fields Using Nonlinear Acoustic Tomography. Appl. Phys. Lett. 2019, 115, 104104. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, H.; Ji, Y.; Ren, Y.; He, M.; Su, M.; Cai, X. Nonlinear Acoustic Tomography for Measuring the Temperature and Velocity Fields by Using the Covariance Matrix Adaptation Evolution Strategy Algorithm. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Prasad, A.K. Stereoscopic Particle Image Velocimetry. Exp. Fluids 2000, 29, 103–116. [Google Scholar] [CrossRef]
- Calluaud, D.; David, L. Stereoscopic Particle Image Velocimetry Measurements of the Flow around a Surface-Mounted Block. Exp. Fluids 2004, 36, 53–61. [Google Scholar] [CrossRef]
- Van Doorne, C.W.H.; Westerweel, J. Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV. Exp. Fluids 2007, 42, 259–279. [Google Scholar] [CrossRef]
- Elsinga, G.E.; Scarano, F.; Wieneke, B.; Van Oudheusden, B.W. Tomographic Particle Image Velocimetry. Exp. Fluids 2006, 41, 933–947. [Google Scholar] [CrossRef]
- De Silva, C.M.; Baidya, R.; Marusic, I. Enhancing Tomo-PIV Reconstruction Quality by Reducing Ghost Particles. Meas. Sci. Technol. 2013, 24, 024010. [Google Scholar] [CrossRef]
- Cierpka, C.; Kähler, C.J. Particle Imaging Techniques for Volumetric Three-Component (3D3C) Velocity Measurements in Microfluidics. J. Vis. 2012, 15, 1–31. [Google Scholar] [CrossRef]
- Willert, C.E.; Gharib, M. Three-Dimensional Particle Imaging with a Single Camera. Exp. Fluids 1992, 12, 353–358. [Google Scholar] [CrossRef]
- Tien, W.-H.; Dabiri, D.; Hove, J.R. Color-Coded Three-Dimensional Micro Particle Tracking Velocimetry and Application to Micro Backward-Facing Step Flows. Exp. Fluids 2014, 55, 1684. [Google Scholar] [CrossRef]
- Kreizer, M.; Liberzon, A. Three-Dimensional Particle Tracking Method Using FPGA-Based Real-Time Image Processing and Four-View Image Splitter. Exp. Fluids 2011, 50, 613–620. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, H.; Wang, J. A Single Camera Volumetric Particle Image Velocimetry and Its Application. Sci. China Technol. Sci. 2012, 55, 2501–2510. [Google Scholar] [CrossRef]
- Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V. Single-Camera, Three-Dimensional Particle Tracking Velocimetry. Opt. Express 2012, 20, 9031. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, A.; Sakakibara, J. Development of Multiple-Eye PIV Using Mirror Array. Meas. Sci. Technol. 2018, 29, 064011. [Google Scholar] [CrossRef]
- Wu, M.; Roberts, J.W.; Buckley, M. Three-Dimensional Fluorescent Particle Tracking at Micron-Scale Using a Single Camera. Exp. Fluids 2005, 38, 461–465. [Google Scholar] [CrossRef]
- Toprak, E.; Balci, H.; Blehm, B.H.; Selvin, P.R. Three-Dimensional Particle Tracking via Bifocal Imaging. Nano Lett. 2007, 7, 2043–2045. [Google Scholar] [CrossRef] [PubMed]
- Cierpka, C.; Segura, R.; Hain, R.; Kähler, C.J. A Simple Single Camera 3C3D Velocity Measurement Technique without Errors Due to Depth of Correlation and Spatial Averaging for Microfluidics. Meas. Sci. Technol. 2010, 21, 045401. [Google Scholar] [CrossRef]
- Hoyer, K.; Holzner, M.; Lüthi, B.; Guala, M.; Liberzon, A.; Kinzelbach, W. 3D Scanning Particle Tracking Velocimetry. Exp. Fluids 2005, 39, 923–934. [Google Scholar] [CrossRef]
- Casey, T.A.; Sakakibara, J.; Thoroddsen, S.T. Scanning Tomographic Particle Image Velocimetry Applied to a Turbulent Jet. Phys. Fluids 2013, 25, 025102. [Google Scholar] [CrossRef]
- Rice, B.E.; McKenzie, J.A.; Peltier, S.J.; Combs, C.S.; Thurow, B.S.; Clifford, C.J.; Johnson, K. Comparison of 4-Camera Tomographic PIV and Single-Camera Plenoptic PIV. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FA, USA, 8–12 January 2018; American Institute of Aeronautics and Astronautics: Kissimmee, FA, USA, 2018. [Google Scholar]
- Shi, S.; Ding, J.; Atkinson, C.; Soria, J.; New, T.H. A Detailed Comparison of Single-Camera Light-Field PIV and Tomographic PIV. Exp. Fluids 2018, 59, 46. [Google Scholar] [CrossRef]
- Skupsch, C.; Brücker, C. Multiple-Plane Particle Image Velocimetry Using a Light-Field Camera. Opt. Express 2013, 21, 1726. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; He, X.; Wang, K.; Wang, D.; Tan, H. Single Camera Based Dual-View Light-Field Particle Imaging Velocimetry with Isotropic Resolution. Opt. Lasers Eng. 2023, 167, 107592. [Google Scholar] [CrossRef]
- Teich, M.; Mattern, M.; Sturm, J.; Büttner, L.; Czarske, J.W. Spiral Phase Mask Shadow-Imaging for 3D-Measurement of Flow Fields. Opt. Express 2016, 24, 27371. [Google Scholar] [CrossRef]
- Bilsing, C.; Radner, H.; Burgmann, S.; Czarske, J.; Büttner, L. 3D Imaging with Double-Helix Point Spread Function and Dynamic Aberration Correction Using a Deformable Mirror. Opt. Lasers Eng. 2022, 154, 107044. [Google Scholar] [CrossRef]
- Smallwood, G.J. A Technique for Two-Colour Particle Image Velocimetry; University of Ottawa (Canada): Ottawa, ON, Canada, 1992. [Google Scholar] [CrossRef]
- Overbrueggen, T.V.; Klaas, M.; Bahl, B.; Schroeder, W. Tomographic Particle-Image Velocimetry Analysis of In-Cylinder Flows. SAE Int. J. Engines 2015, 8, 1447–1467. [Google Scholar] [CrossRef]
- De Ponte, S.; Malavasi, S.; Svelto, C.; Matteazzi, G. A Recirculating Flow Studied by Three Colour Particle Image Velocimetry. In Proceedings of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF’03), Gottingen, Germany, 25–29 August 2003; IEEE: Gottingen, Germany, 2003; pp. 228–235. [Google Scholar]
- Cenedese, A.; Romano, G.P. Comparison Between Classical And Three-Color Piv In A Wake Flow. J. Flow Vis. Image Proc. 1993, 1, 371–384. [Google Scholar] [CrossRef]
- Westerweel, J.; Elsinga, G.E.; Adrian, R.J. Particle Image Velocimetry for Complex and Turbulent Flows. Annu. Rev. Fluid Mech. 2013, 45, 409–436. [Google Scholar] [CrossRef]
- Atcheson, B.; Ihrke, I.; Heidrich, W.; Tevs, A.; Bradley, D.; Magnor, M.; Seidel, H.-P. Time-Resolved 3d Capture of Non-Stationary Gas Flows. ACM Trans. Graph. 2008, 27, 132. [Google Scholar] [CrossRef]
- Lamothe, E.; Ihrke, I.; Granier, X. Rainbow Particle Imaging Velocimetry, In Journées lmagerie Optique Non Conventionnelle. March 2017. Available online: https://www.researchgate.net/publication/341189087_Rainbow_Particle_Imaging_Velocimetry (accessed on 5 June 2025).
- Xiong, J.; Idoughi, R.; Aguirre-Pablo, A.A.; Aljedaani, A.B.; Dun, X.; Fu, Q.; Thoroddsen, S.T.; Heidrich, W. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging. ACM Trans. Graph. 2017, 36, 36. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining Optical Flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef]
- Meinhardt-Llopis, E.; Sánchez Pérez, J.; Kondermann, D. Horn-Schunck Optical Flow with a Multi-Scale Strategy. Image Process. Line 2013, 3, 151–172. [Google Scholar] [CrossRef]
- Shan, L.; Xiong, J.-Z.; Shi, F.-Y.; Hong, B.; Jian, J.; Zhan, H.-H.; Kong, M. Three-Dimensional Color Particle Image Velocimetry Based on a Cross-Correlation and Optical Flow Method. Chin. Phys. B 2023, 32, 054702. [Google Scholar] [CrossRef]
- Ruhnau, P.; Schnörr, C. Optical Stokes Flow Estimation: An Imaging-Based Control Approach. Exp. Fluids 2006, 42, 61–78. [Google Scholar] [CrossRef]
- Xiong, J.; Aguirre-Pablo, A.A.; Idoughi, R.; Thoroddsen, S.T.; Heidrich, W. RainbowPIV with Improved Depth Resolution—Design and Comparative Study with TomoPIV. Meas. Sci. Technol. 2021, 32, 025401. [Google Scholar] [CrossRef]
- Xing, F.; Wang, D.; Tan, H.; Wang, K.; Lin, B.; Zhang, D. High-Resolution Light-Field Particle Imaging Velocimetry with Color-and-Depth Encoded Illumination. Opt. Lasers Eng. 2024, 173, 107921. [Google Scholar] [CrossRef]
- Aguirre-Pablo, A.A.; Aljedaani, A.B.; Xiong, J.; Idoughi, R.; Heidrich, W.; Thoroddsen, S.T. Single-Camera 3D PTV Using Particle Intensities and Structured Light. Exp. Fluids 2019, 60, 25. [Google Scholar] [CrossRef]
- Noto, D.; Tasaka, Y.; Murai, Y. In Situ Color-to-Depth Calibration: Toward Practical Three-Dimensional Color Particle Tracking Velocimetry. Exp. Fluids 2021, 62, 131. [Google Scholar] [CrossRef]
- Noto, D.; Tasaka, Y.; Murai, Y. Low-Cost 3D Color Particle Tracking Velocimetry: Application to Thermal Turbulence in Water. Exp. Fluids 2023, 64, 92. [Google Scholar] [CrossRef]
- Park, H.J.; Yamagishi, S.; Osuka, S.; Tasaka, Y.; Murai, Y. Development of Multi-Cycle Rainbow Particle Tracking Velocimetry Improved by Particle Defocusing Technique and an Example of Its Application on Twisted Savonius Turbine. Exp. Fluids 2021, 62, 71. [Google Scholar] [CrossRef]
- Scruby, C.B.; Drain, L.E. Laser Ultrasonics: Techniques and Applications, 1st ed.; Routledge: Abingdon, UK, 2019; ISBN 978-0-203-74909-8. [Google Scholar]
- Eckhardt, G.; Hellwarth, R.W.; McClung, F.J.; Schwarz, S.E.; Weiner, D.; Woodbury, E.J. Stimulated Raman Scattering From Organic Liquids. Phys. Rev. Lett. 1962, 9, 455–457. [Google Scholar] [CrossRef]
- Regunath, G.S.; Zimmerman, W.B.; Tesař, V.; Hewakandamby, B.N. Experimental Investigation of Helicity in Turbulent Swirling Jet Using Dual-Plane Dye Laser PIV Technique. Exp. Fluids 2008, 45, 973–986. [Google Scholar] [CrossRef]
- Lauriola, D.K.; Gomez, M.; Meyer, T.R.; Son, S.F.; Slipchenko, M.; Roy, S. High Speed Particle Image Velocimetry and Particle Tracking Methods in Reactive and Non-Reactive Flows. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; American Institute of Aeronautics and Astronautics: San Diego, CA, USA, 2019. [Google Scholar]
- Xiong, J.; Fu, Q.; Idoughi, R.; Heidrich, W. Reconfigurable Rainbow PIV for 3D Flow Measurement. In Proceedings of the 2018 IEEE International Conference on Computational Photography (ICCP), Pittsburgh, PA, USA, 4–6 May 2018; IEEE: Pittsburgh, PA, USA, 2018; pp. 1–9. [Google Scholar]
- Wang, K.; Xing, F.; Lin, B.; Su, L.; Liu, J.; Yang, X.; Tan, H.; Wang, D. Synthetic Color-and-Depth Encoded (sCade) Illumination-Based High-Resolution Light Field Particle Imaging Velocimetry. Opt. Express 2024, 32, 27042. [Google Scholar] [CrossRef]
- Tomac, I.; Slavič, J. Damping Identification Based on a High-Speed Camera. Mech. Syst. Signal Process. 2022, 166, 108485. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, F.; Su, L.; Tan, H.; Wang, D. A Mini-Review of Recent Developments in Plenoptic Background-Oriented Schlieren Technology for Flow Dynamics Measurement. Aerospace 2024, 11, 303. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, F.; Su, L.; Tan, H.; Wang, D. Isotropic Resolution Plenoptic Background Oriented Schlieren through Dual-View Acquisition. Opt. Express 2024, 32, 4603. [Google Scholar] [CrossRef]
- Su, L.; Li, J.; He, X.; Liu, Y.; Wang, Y.; Tan, H.; Wang, D. Panoramic Background-Oriented Schlieren with Parallelized Cameras at Enhanced Resolution. Phys. Fluids 2025, 37, 067139. [Google Scholar] [CrossRef]
- Sharma, R.; Perry, S.; Cheng, E. Noise-Resilient Depth Estimation for Light Field Images Using Focal Stack and FFT Analysis. Sensors 2022, 22, 1993. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, X.; Jiang, J.; Jiang, K.; Li, R.; Cheng, K.; Ji, X. Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging Scenarios. arXiv 2024, arXiv:2402.11826. [Google Scholar] [CrossRef]
- Lin, B.; Tian, Y.; Zhang, Y.; Zhu, Z.; Wang, D. Deep Learning Methods for High-Resolution Microscale Light Field Image Reconstruction: A Survey. Front. Bioeng. Biotechnol. 2024, 12, 1500270. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Xing, F.; Su, L.; Wang, K.; Liu, Y.; Zhang, D.; Yang, X.; Tan, H.; Zhu, Z.; Wang, D. Real-Time and Universal Network for Volumetric Imaging from Microscale to Macroscale at High Resolution. Light Sci. Appl. 2025, 14, 178. [Google Scholar] [CrossRef] [PubMed]
Parameters | Typical Resolution | System Cost | Environmental Adaptability | Control Complexity | Typical Application |
---|---|---|---|---|---|
LED | 1–5 μm | Low | Low | Low (dimming) | Stirring disturbance, vortex ring, square cavity driving, etc. |
Projector | 10–50 μm | Medium | Medium | Medium (programming) | Cylindrical rotating flow, flow driven by rotating impellers, wake flow of twisted turbine shedding, etc. |
Laser | 0.1–1 μm | High | High | High (optical path calibration) | Vortex driven by motor rotors, turbulence research, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, X.; Tian, Y.; Liu, C.; Wang, D. Particle Imaging Velocimetry with Color-Encoded Illumination: A Review. Sensors 2025, 25, 4981. https://doi.org/10.3390/s25164981
Wang Y, He X, Tian Y, Liu C, Wang D. Particle Imaging Velocimetry with Color-Encoded Illumination: A Review. Sensors. 2025; 25(16):4981. https://doi.org/10.3390/s25164981
Chicago/Turabian StyleWang, Yizhu, Xiaoming He, Yuan Tian, Chang Liu, and Depeng Wang. 2025. "Particle Imaging Velocimetry with Color-Encoded Illumination: A Review" Sensors 25, no. 16: 4981. https://doi.org/10.3390/s25164981
APA StyleWang, Y., He, X., Tian, Y., Liu, C., & Wang, D. (2025). Particle Imaging Velocimetry with Color-Encoded Illumination: A Review. Sensors, 25(16), 4981. https://doi.org/10.3390/s25164981