A ML-Based Resource Allocation Scheme for Energy Optimization in 5G NR
Abstract
1. Introduction
- We propose a novel, multi-domain sleep-mode scheme for 5G RAN energy optimization;
- We design a statistically grounded UE traffic model based on a custom RRC-SD to simulate variant UE demand;
- We implement and evaluate a lightweight, interpretable ML model using a decision tree (CART) algorithm to predict optimal sleep states based on UE traffic.
2. Background
3. 5G NR Testbed Model
3.1. Network Layout
3.2. Network Resource Feature
4. Resource Allocation for Different Sleep Schemes
4.1. Resources Definition
- Slot: Slot is a time-domain resource. The duration of a slot can vary based on the subcarrier spacing, which ranges from 15 kHz to 240 kHz. To describe the scheme of our sleep states clearly, we have considered 10 slots as the scheduling time.
- Physical Channel: Synchronization signal block (SSB) is essential for communication and must be enabled in all cells. The Physical Data Shared Channel (PDSCH), Demodulation Reference Signal, and Phase Tracking Reference Signal are all enabled in every cell to transfer data. However, the Physical Downlink Control Channel (PDCCH) is only enabled in cell n78 for signaling while being disabled in both n28 and n258 because these two cells are only used for data traffic.
- Carrier: Carrier resources belong to the frequency domain. We have defined three different carriers in our network model, as shown in Table 2.
- Layer: In the antenna domain, we configured that all cells use two antenna layers, except for the n78-2 cell, which utilizes four layers.
4.2. Resource Allocation in Each Cell
4.3. Sleep State Performance
5. UE Demand
5.1. UE Model Using RRC Diagram
- RRC state 1: RRC-Idle;
- RRC state 2: RRC-Inactive;
- RRC state 3: RRC-Connected with one DRB;
- RRC state 4: RRC-Connected with one DRBs;
- RRC state 5: RRC-Connected with three DRBs;
- RRC state 6: RRC-Connected with four DRBs.
5.2. UE Distribution
5.3. UE Demand Results
5.4. UE Demand Detaset
6. ML Model and Evaluation
6.1. Data Process
6.2. ML Model Selection for Our Case
6.3. Model Analysis and Evaluation
6.3.1. Interpretability and Sensitive Analysis
6.3.2. Complexity and Scalability Analysis
6.3.3. EE- and QoS-Sensitive Accuracy
6.3.4. Comparison with the Existing Methods
6.3.5. Open Dataset
7. Results
7.1. ML Model Accuracy Results
7.2. Energy-Saving Results
7.3. Limitations and Future Work
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ASM | Advanced Sleep Mode |
BWP | Bandwidth Part |
CART | Classification and Regression Tree |
CA | Carrier Aggregation |
CDF | Cumulative Distribution Function |
CSI-RS | Channel State Information–Reference Signal |
CSP | Communication Service Provider |
DC | Dual Connectivity |
DRB | Data Radio Bearer |
EE | Energy Efficiency |
gNB | gNodeB |
ICT | Information and Communication Technology |
MIMO | Multiple Input Multiple Output |
ML | Machine Learning |
NR | New Radio (5G NR) |
NR-DC | New Radio Dual Connectivity |
PDCCH | Physical Downlink Control Channel |
Probability Density Function | |
PDSCH | Physical Downlink Shared Channel |
QoS | Quality of Service |
RAN | Radio Access Network |
RE | Resource Element |
RRC | Radio Resource Control |
RRC-SD | Radio Resource Control State Diagram |
SSB | Synchronization Signal Block |
UE | User Equipment |
References
- Shehab, M.J.; Kassem, I.; Kutty, A.A.; Kucukvar, M.; Onat, N.; Khattab, T. 5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access 2022, 10, 2987–3006. [Google Scholar] [CrossRef]
- Banda, L.; Mzyece, M.; Mekuria, F. 5G Business Models for Mobile Network Operators—A Survey. IEEE Access 2022, 10, 94851–94886. [Google Scholar] [CrossRef]
- Ericsson Breaking the Energy Curve Report 2022: 5G Network Success can be Achieved in an Energy Efficient Way. October 2022. Available online: https://www.ericsson.com/en/news/2022/10/ericsson-publishes-breaking-the-energy-curve-report-2022 (accessed on 22 February 2025).
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Tan, R.; Shi, Y.; Fan, Y.; Zhu, W.; Wu, T. Energy Saving Technologies and Best Practices for 5G Radio Access Network. IEEE Access 2022, 10, 51747–51756. [Google Scholar] [CrossRef]
- Yao, X. Energy Consumption Optimization in 5G RAN: A Dual Perespective from BS to UE. Master’s Thesis, UPM, Madrid, Spain, 2024. [Google Scholar]
- López-Pérez, D.; De Domenico, A.; Piovesan, N.; Xinli, G.; Bao, H.; Qitao, S.; Debbah, M. A Survey on 5G Radio Access Network Energy Efficiency: Massive MIMO, Lean Carrier Design, Sleep Modes, and Machine Learning. IEEE Commun. Surv. Tutor. 2022, 24, 653–697. [Google Scholar] [CrossRef]
- 3GPP TR 38.864 V18.1.0.; 3GPP. Study on Network Energy Savings for NR (Release 18). March 2023. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.864 (accessed on 5 August 2025).
- Salem, F.E.; Chahed, T.; Altman, Z.; Gati, A. Traffic-aware Advanced Sleep Modes management in 5G networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Islam, T.; Lee, D.; Lim, S.S. Enabling Network Power Savings in 5G-Advanced and Beyond. IEEE J. Sel. Areas Commun. 2023, 41, 1888–1899. [Google Scholar] [CrossRef]
- 3GPP TS 28.310 V18.5.0.; 3GPP. Management and Orchestration; Energy Efficiency of 5G. July 2024. Available online: https://www.etsi.org/deliver/etsi_ts/128300_128399/128310/18.05.00_60/ts_128310v180500p.pdf (accessed on 5 August 2025).
- Laselva, D.; Hakimi, S.; Lauridsen, M.; Khan, B.; Kumar, D.; Mogensen, P. On the Potential of Radio Adaptations for 6G Network Energy Saving. In Proceedings of the 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Antwerp, Belgium, 3–6 June 2024; pp. 1157–1162. [Google Scholar] [CrossRef]
- Khodamoradi, V.; Sali, A.; Salah, A.A.; Ali, B.M.; Abdullah, R.S.A.R.; Krikidis, I. Energy Efficient Base Station Transmit Power Adaptation for Green 5G Massive MIMO Systems. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ghosh, D.; Bharathi, S.H. Energy consumption saving in 5G network based on artificial intelligence. In Proceedings of the 2023 International Conference for Advancement in Technology (ICONAT), Goa, India, 24–26 January 2023. [Google Scholar] [CrossRef]
- ITU. Environmental Efficiency of AI-Based Systems. 2021. Available online: https://www.itu.int/en/ITU-T/focusgroups/ai4ee/Documents/T-FG-AI4EE-2021-D.WG3.02-PDF-E.pdf (accessed on 30 June 2024).
- Wu, D.; Xu, Y.T.; Jenkin, M.; Jang, S.; Hossain, E.; Liu, X.; Dudek, G. Energy Saving in Cellular Wireless Networks via Transfer Deep Reinforcement Learning. In Proceedings of the GLOBECOM 2023-2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 7019–7024. [Google Scholar] [CrossRef]
- Salem, F.E.; Altman, Z.; Gati, A.; Chahed, T.; Altman, E. Reinforcement Learning Approach for Advanced Sleep Modes Management in 5G Networks. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Elsayed, M.; Joda, R.; Abou-Zeid, H.; Atawia, R.; Sediq, A.B.; Boudreau, G.; Erol-Kantarci, M. Reinforcement Learning Based Energy-Efficient Component Carrier Activation-Deactivation in 5G. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Rajapaksha, N.; Mohammadi, J.; Wesemann, S.; Wild, T.; Rajatheva, N. Minimizing Energy Consumption in MU-MIMO via Antenna Muting by Neural Networks with Asymmetric Loss. IEEE Trans. Veh. Technol. 2024, 73, 6600–6613. [Google Scholar] [CrossRef]
Frequency Band | BW (MHz) | TDD/FDD | SCS (kHz) | µ | Slots/ Frame | RBs | Antenna |
---|---|---|---|---|---|---|---|
n28 | 10 | FDD | 15 | 0 | 10 | 52 | omni |
n78 | 100 | TDD | 30 | 1 | 20 | 273 | sector |
n258 | 400 | TDD | 120 | 3 | 80 | 264 | omni |
Resources | BW (MHz) | BWP | RBs | Slots/ Frame | Layers | Antenna | Power (W) 1 |
---|---|---|---|---|---|---|---|
n28 | 10 | 1 | 52 | 10 | 2 | Omni | 5 |
n78-1 | 40 | 1 | 109 | 20 | 2 | Sector | 5 |
n78-2 | 20 | 2 | 55 | 20 | 4 | Sector | 5 |
n78-3 | 40 | 3 | 109 | 20 | 2 | Sector | 5 |
n258-1 | 120 | 1 | 79 | 80 | 2 | Omni | 3 |
n258-2 | 100 | 2 | 66 | 80 | 2 | Omni | |
n258-3 | 80 | 3 | 53 | 80 | 2 | Omni | |
n258-4 | 60 | 4 | 40 | 80 | 2 | Omni | |
n258-5 | 40 | 5 | 26 | 80 | 2 | Omni |
State | Slot | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | ||||||||||
1 | DL | |||||||||
2 | DL | DL | ||||||||
3 | DL | DL | DL | DL | ||||||
4 | DL | DL | DL | DL | DL | DL | ||||
5 | DL | DL | DL | DL | DL | DL | DL | DL | ||
6 | DL | DL | DL | DL | DL | DL | DL | DL | DL | DL |
State | Slot | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | ||||||||||
1 | DL | UL | ||||||||
2 | DL | DL | UL | |||||||
3 | DL | DL | DL | UL | UL | |||||
4 | DL | DL | DL | DL | UL | UL | ||||
5 | DL | DL | DL | DL | DL | UL | UL | UL | ||
6 | DL | DL | DL | DL | DL | DL | UL | UL | UL | UL |
State | BWP | Slot | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 3 | 4 | |
0 | ||||||||||
1 | DL | DL | DL | |||||||
2 | DL | DL | DL | DL | DL | |||||
3 | DL | DL | DL | DL | DL | DL | DL | |||
4 | DL | DL | DL | DL | DL | DL | DL | DL | DL | |
5 | DL | DL | DL | DL | DL | DL | DL | DL | DL | DL |
6 | DL | DL | DL | DL | DL | DL | DL | DL | DL | DL |
State | BW (MHz) | DL Slots | UL Slots | Relat. Power | PDSCH (kREs/s) | PDCCH (kREs/s) 2 | DRB (bearer/s) | DRB in Grid |
---|---|---|---|---|---|---|---|---|
0 | 28.90 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 |
1 | 113.88 | 2 | 2 | 0.12 | 20,476.8 | 0 | 4266 | 85 |
2 | 208.92 | 3 | 3 | 0.28 | 55,248.0 | 0 | 11,510 | 230 |
3 | 285.48 | 4 | 4 | 0.50 | 101,155.2 | 0 | 21,075 | 422 |
4 | 343.20 | 5 | 5 | 0.75 | 152,352.0 | 0 | 31,740 | 635 |
5 | 380.76 | 5 | 5 | 0.83 | 169,200.0 | 0 | 35,250 | 705 |
6 | 380.76 | 6 | 6 | 1 | 203,054.4 | 0 | 42,303 | 846 |
Transition | RRC Action | Type A (30%) | Type B (50%) | Type C (20%) |
---|---|---|---|---|
α | Attach | 0.14 | 0.08 | 0.06 |
β | Detach | 0.18 | 0.18 | 0.18 |
λ1 | DRB+ | 0.10 | 0.06 | 0.03 |
λ2 | DRB+ | 0.04 | 0.03 | 0.02 |
λ3 | DRB+ | 0.02 | 0.02 | 0.01 |
μ1 | DRB− | 0.14 | 0.16 | 0.18 |
μ2 | DRB− | 0.16 | 0.18 | 0.20 |
μ3 | DRB− | 0.18 | 0.20 | 0.22 |
ρ | Suspend | 0.30 | 0.30 | 0.30 |
γ | Release | 0.04 | 0.04 | 0.04 |
υ | Resume | 0.14 | 0.08 | 0.06 |
Cell | Connected State 1 | Connected State 2 | Connected State 3 | Connected State 4 |
---|---|---|---|---|
n78-1 | 1 n78-1 DRB | 2 n78-1 DRB | 2 n78-1 DRB 1 n28 DRB | Void |
n78-2 | 1 n78-2 DRB | 1 n78-2 DRB 1 n28 DRB | Void | Void |
n78-3 | 1 n78-3 DRB | 2 n78-3 DRB | 2 n78-3 DRB 1 n28 DRB | Void |
n258 | 1 n258 DRB | 2 n258 DRB | 3 n258 DRB | 3 n258 DRB 1 n28 DRB |
ML Model | Training Accuracy | Validation Accuracy | Computation Time (s) |
---|---|---|---|
Decision tree (CART) | 85.06% | 84.73% | 0.22 |
Decision tree (ID3) | 85.06% | 84.73% | 1.20 |
KNN (k = 4) 3 | 84.17% | 84.01% | 0.53 |
Random forest | 85.04% | 84.72% | 6.60 |
RBF SVM | 85.06% | 84.74% | 13.84 |
Cell | F1 | F2 | F3 | F4 |
---|---|---|---|---|
n258 | 1 | 0 | 0 | 0 |
n78-1 | 0 | 1 | 0 | 0 |
n78-2 | 0.0611 | 0 | 0.9389 | 0 |
n78-3 | 0 | 0 | 0 | 1 |
n28 | 0 | 0.1918 | 0.6126 | 0.1956 |
Cell | Nodes | Depth |
---|---|---|
n258 | 14 | 3 |
n78-1 | 30 | 6 |
n78-2 | 150 | 15 |
n78-3 | 30 | 5 |
n28 | 730 | 12 |
Cell | Node | Depth |
---|---|---|
n258 | 99.38% | 98.28% |
n78-1 | 94.81% | 92.54% |
n78-2 | 86.95% | 98.52% |
n78-3 | 94.53% | 92.54% |
n28 | 86.90% | 87.54% |
n258 | n78-1 | n78-2 | n78-3 | n28 | |
---|---|---|---|---|---|
Training Accuracy | 97.33% | 87.19% | 77.33% | 86.77% | 76.67% |
Validation Accuracy | 97.66% | 87.37% | 76.53% | 87.07% | 75.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Pérez Yuste, A. A ML-Based Resource Allocation Scheme for Energy Optimization in 5G NR. Sensors 2025, 25, 4978. https://doi.org/10.3390/s25164978
Yao X, Pérez Yuste A. A ML-Based Resource Allocation Scheme for Energy Optimization in 5G NR. Sensors. 2025; 25(16):4978. https://doi.org/10.3390/s25164978
Chicago/Turabian StyleYao, Xiao, and Antonio Pérez Yuste. 2025. "A ML-Based Resource Allocation Scheme for Energy Optimization in 5G NR" Sensors 25, no. 16: 4978. https://doi.org/10.3390/s25164978
APA StyleYao, X., & Pérez Yuste, A. (2025). A ML-Based Resource Allocation Scheme for Energy Optimization in 5G NR. Sensors, 25(16), 4978. https://doi.org/10.3390/s25164978