Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives
Abstract
1. Introduction
2. Current State of Biosensor Technologies for Depression
2.1. Electrochemical Biosensors
2.2. Wearable Physiological Sensors
2.3. Contactless Behavioral Sensors
2.4. Neural Sensors
2.5. Environmental Sensors
3. Multi-Modal Integration Approaches
3.1. Sensor Fusion Strategies
3.2. Temporal Dynamics and Rhythm Analysis
3.3. Contextual Awareness and Environmental Integration
3.4. Case Studies of Multi-Modal Integration
3.5. Performance Metrics Summary
4. Clinical Applications and Validation
4.1. Diagnostic and Screening Applications
4.2. Treatment Monitoring and Outcome Prediction
5. Technical and Implementation Challenges
5.1. Technical Challenges
5.2. Practical Implementation Barriers
5.3. Ethical Considerations and Privacy Protection
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Depressive Disorder (Depression). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 7 March 2025).
- World Health Organization Mental Disorders. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 18 May 2025).
- Smith, K.M.; Renshaw, P.F.; Bilello, J. The Diagnosis of Depression: Current and Emerging Methods. Compr. Psychiatry 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Mao, K.; Wu, Y.; Chen, J. A Systematic Review on Automated Clinical Depression Diagnosis. npj Ment. Health Res. 2023, 2, 20. [Google Scholar] [CrossRef]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Leistner, C.; Menke, A. Hypothalamic—Pituitary—Adrenal Axis and Stress. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 55–64. [Google Scholar]
- Marvar, P.J.; Harrison, D.G. Inflammation, Immunity and the Autonomic Nervous System. In Primer on the Autonomic Nervous System, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 325–329. [Google Scholar]
- Kim, H.; Jung, H.R.; Kim, J.B.; Kim, D.-J. Autonomic Dysfunction in Sleep Disorders: From Neurobiological Basis to Potential Therapeutic Approaches. J. Clin. Neurol. 2022, 18, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A.; Pawlowski, M. Depression and Sleep. Int. J. Mol. Sci. 2019, 20, 607. [Google Scholar] [CrossRef]
- Logan, R.W.; McClung, C.A. Rhythms of Life: Circadian Disruption and Brain Disorders across the Lifespan. Nat. Rev. Neurosci. 2019, 20, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Bagchi, D. An Intricate Relationship between Circadian Rhythm Dysfunction and Psychiatric Diseases. Explor. Neurosci. 2024, 3, 321–351. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, J. Neuroinflammation, Memory, and Depression: New Approaches to Hippocampal Neurogenesis. J. Neuroinflammation 2023, 20, 283. [Google Scholar] [CrossRef]
- Buch, A.M.; Liston, C. Dissecting Diagnostic Heterogeneity in Depression by Integrating Neuroimaging and Genetics. Neuropsychopharmacology 2021, 46, 156–175. [Google Scholar] [CrossRef]
- Dong, T.; Yu, C.; Mao, Q.; Han, F.; Yang, Z.; Yang, Z.; Pires, N.; Wei, X.; Jing, W.; Lin, Q.; et al. Advances in Biosensors for Major Depressive Disorder Diagnostic Biomarkers. Biosens. Bioelectron. 2024, 258, 116291. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; AlSaad, R.; Shuweihdi, F.; Ahmed, A.; Aziz, S.; Sheikh, J. Systematic Review and Meta-Analysis of Performance of Wearable Artificial Intelligence in Detecting and Predicting Depression. npj Digit. Med. 2023, 6, 84. [Google Scholar] [CrossRef]
- Dunham, K.E.; Venton, B.J. Electrochemical and Biosensor Techniques to Monitor Neurotransmitter Changes with Depression. Anal. Bioanal. Chem. 2024, 416, 2301–2318. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Liu, J.J.; Borsari, B.; Li, Y.; Liu, S.X.; Gao, Y.; Xin, X.; Lou, S.; Jensen, M.; Garrido-Martín, D.; Verplaetse, T.L.; et al. Digital Phenotyping from Wearables Using AI Characterizes Psychiatric Disorders and Identifies Genetic Associations. Cell 2025, 188, 515–529.e15. [Google Scholar] [CrossRef] [PubMed]
- Price, G.D.; Heinz, M.V.; Song, S.H.; Nemesure, M.D.; Jacobson, N.C. Using Digital Phenotyping to Capture Depression Symptom Variability: Detecting Naturalistic Variability in Depression Symptoms across One Year Using Passively Collected Wearable Movement and Sleep Data. Transl. Psychiatry 2023, 13, 381. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, Y.; Huang, Q.; Huang, J.; Tao, Y.; Chen, J.; Li, H.-Y.; Liu, H. Electrochemical Protein Biosensors for Disease Marker Detection: Progress and Opportunities. Microsyst. Nanoeng. 2024, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ferdosi, F.; Anoosheh, S.; Kaveh, M.; Dadgostar, E.; Ehtiati, S.; Movahedpour, A.; Khanifar, H.; Haghighi, M.M.; Khatami, S.H. Electrochemical Biosensors for Depression: Diagnosis and Therapeutic Monitoring. Clin. Chim. Acta 2025, 567, 120091. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.G.; Rathod, P.R.; Koyappayil, A.; Hwang, S.; Lee, M.-H. Recent Advances of Electrochemical and Optical Point-of-Care Biosensors for Detecting Neurotransmitter Serotonin Biomarkers. Biosens. Bioelectron. 2025, 267, 116743. [Google Scholar] [CrossRef]
- Arumugasamy, S.K.; Chellasamy, G.; Gopi, S.; Govindaraju, S.; Yun, K. Current Advances in the Detection of Neurotransmitters by Nanomaterials: An Update. TrAC Trends Anal. Chem. 2020, 123, 115766. [Google Scholar] [CrossRef]
- Chang, A.-Y.; Liu, X.; Pei, Y.; Gong, C.; Arumugam, P.U.; Wang, S. Dopamine Sensing with Robust Carbon Nanotube Implanted Polymer Micropillar Array Electrodes Fabricated by Coupling Micromolding and Infiltration Coating Processes. Electrochim. Acta 2021, 368, 137632. [Google Scholar] [CrossRef]
- Kelich, P.; Jeong, S.; Navarro, N.; Adams, J.; Sun, X.; Zhao, H.; Landry, M.P.; Vuković, L. Discovery of DNA—Carbon Nanotube Sensors for Serotonin with Machine Learning and Near-Infrared Fluorescence Spectroscopy. ACS Nano 2021, 16, 736–745. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Wang, H. Bioreceptors as the Key Components for Electrochemical Biosensing in Medicine. Cell Rep. Phys. Sci. 2024, 5, 101801. [Google Scholar] [CrossRef]
- Piacentino, D.; Bianchi, E.; De Donatis, D.; Florio, V.; Conca, A. Therapeutic Drug Monitoring of Antidepressants: An Underused but Potentially Valuable Tool in Primary Care. Front. Psychiatry 2022, 13, 867840. [Google Scholar] [CrossRef]
- Babaei, A.; Taheri, A.R. Nafion/Ni(OH)2 Nanoparticles-Carbon Nanotube Composite Modified Glassy Carbon Electrode as a Sensor for Simultaneous Determination of Dopamine and Serotonin in the Presence of Ascorbic Acid. Sens. Actuators B Chem. 2013, 176, 543–551. [Google Scholar] [CrossRef]
- Chandra, D.K.; Kumar, A.; Mahapatra, C. Smart Nano-Hybrid Metal-Organic Frameworks: Revolutionizing Advancements, Applications, and Challenges in Biomedical Therapeutics and Diagnostics. Hybrid Adv. 2025, 9, 100406. [Google Scholar] [CrossRef]
- Caldevilla, R.; Morais, S.L.; Cruz, A.; Delerue-Matos, C.; Moreira, F.; Pacheco, J.G.; Santos, M.; Barroso, M.F. Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. Int. J. Mol. Sci. 2023, 24, 8480. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, Carbon Nanotubes, Zinc Oxide and Gold as Elite Nanomaterials for Fabrication of Biosensors for Healthcare. Biosens. Bioelectron. 2015, 70, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Rykov, Y.; Thach, T.-Q.; Bojic, I.; Christopoulos, G.; Car, J. Digital Biomarkers for Depression Screening with Wearable Devices: Cross-Sectional Study with Machine Learning Modeling. JMIR mHealth uHealth 2021, 9, e24872. [Google Scholar] [CrossRef] [PubMed]
- Brasier, N.; Wang, J.; Gao, W.; Sempionatto, J.R.; Dincer, C.; Ates, H.C.; Güder, F.; Olenik, S.; Schauwecker, I.; Schaffarczyk, D.; et al. Applied Body-Fluid Analysis by Wearable Devices. Nature 2024, 636, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Eksin, E.; Senturk, H.; Yildiz, E.; Maral, M. Recent Developments in Wearable Biosensors for Healthcare and Biomedical Applications. TrAC Trends Anal. Chem. 2024, 171, 117510. [Google Scholar] [CrossRef]
- Hosseinifard, B.; Moradi, M.H.; Rostami, R. Classifying Depression Patients and Normal Subjects Using Machine Learning Techniques and Nonlinear Features from EEG Signal. Comput. Methods Programs Biomed. 2013, 109, 339–345. [Google Scholar] [CrossRef]
- Xue, H.; Wang, D.; Jin, M.; Gao, H.; Wang, X.; Xia, L.; Li, D.; Sun, K.; Wang, H.; Dong, X.; et al. Hydrogel Electrodes with Conductive and Substrate-Adhesive Layers for Noninvasive Long-Term EEG Acquisition. Microsyst. Nanoeng. 2023, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, F.M.; Badenes-Sastre, M.; Expósito, F.; Rodriguez-Fortiz, M.J.; Bermudez-Edo, M. EEG Headbands vs Caps: How Many Electrodes Do I Need to Detect Emotions? The Case of the MUSE Headband. Comput. Biol. Med. 2025, 184, 109463. [Google Scholar] [CrossRef] [PubMed]
- Krigolson, O.E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. Front. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.S.; McArthur, G.M.; de Wit, B.; Ibrahim, G.; Badcock, N.A. A Validation of Emotiv EPOC Flex Saline for EEG and ERP Research. PeerJ 2020, 8, e9713. [Google Scholar] [CrossRef]
- Mullen, T.R.; Kothe, C.A.E.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.-P.; Cauwenberghs, G. Real-Time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef]
- Mathewson, K.E.; Harrison, T.J.L.; Kizuk, S.A.D. High and Dry? Comparing Active Dry EEG Electrodes to Active and Passive Wet Electrodes. Psychophysiology 2017, 54, 74–82. [Google Scholar] [CrossRef]
- Sabio, J.; Williams, N.S.; McArthur, G.M.; Badcock, N.A. A Scoping Review on the Use of Consumer-Grade EEG Devices for Research. PLoS ONE 2024, 19, e0291186. [Google Scholar] [CrossRef]
- Yasin, S.; Hussain, S.A.; Aslan, S.; Raza, I.; Muzammel, M.; Othmani, A. EEG Based Major Depressive Disorder and Bipolar Disorder Detection Using Neural Networks: A Review. Comput. Methods Programs Biomed. 2021, 202, 106007. [Google Scholar] [CrossRef]
- Mahato, K.; Saha, T.; Ding, S.; Sandhu, S.S.; Chang, A.-Y.; Wang, J. Hybrid Multimodal Wearable Sensors for Comprehensive Health Monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
- Tomasi, J.; Zai, C.C.; Pouget, J.G.; Tiwari, A.K.; Kennedy, J.L. Heart Rate Variability: Evaluating a Potential Biomarker of Anxiety Disorders. Psychophysiology 2024, 61, e14481. [Google Scholar] [CrossRef]
- Gullett, N.; Zajkowska, Z.; Walsh, A.; Harper, R.; Mondelli, V. Heart Rate Variability (HRV) as a Way to Understand Associations between the Autonomic Nervous System (ANS) and Affective States: A Critical Review of the Literature. Int. J. Psychophysiol. 2023, 192, 35–42. [Google Scholar] [CrossRef]
- Mulcahy, J.S.; Larsson, D.E.O.; Garfinkel, S.N.; Critchley, H.D. Heart Rate Variability as a Biomarker in Health and Affective Disorders: A Perspective on Neuroimaging Studies. NeuroImage 2019, 202, 116072. [Google Scholar] [CrossRef]
- Shah, R.V.; Grennan, G.; Zafar-Khan, M.; Alim, F.; Dey, S.; Ramanathan, D.; Mishra, J. Personalized Machine Learning of Depressed Mood Using Wearables. Transl. Psychiatry 2021, 11, 338. [Google Scholar] [CrossRef]
- Coutts, L.V.; Plans, D.; Brown, A.W.; Collomosse, J. Deep Learning with Wearable Based Heart Rate Variability for Prediction of Mental and General Health. J. Biomed. Inf. 2020, 112, 103610. [Google Scholar] [CrossRef]
- Peis, I.; López-Moríñigo, J.-D.; Pérez-Rodríguez, M.M.; Barrigón, M.-L.; Ruiz-Gómez, M.; Artés-Rodríguez, A.; Baca-García, E. Actigraphic Recording of Motor Activity in Depressed Inpatients: A Novel Computational Approach to Prediction of Clinical Course and Hospital Discharge. Sci. Rep. 2020, 10, 17286. [Google Scholar] [CrossRef] [PubMed]
- Franken, P.; Dijk, D.-J. Sleep and Circadian Rhythmicity as Entangled Processes Serving Homeostasis. Nat. Rev. Neurosci. 2024, 25, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Wüthrich, F.; Nabb, C.B.; Mittal, V.A.; Shankman, S.A.; Walther, S. Actigraphically Measured Psychomotor Slowing in Depression: Systematic Review and Meta-Analysis. Psychol. Med. 2022, 52, 1208–1221. [Google Scholar] [CrossRef] [PubMed]
- Maruani, J.; Mauries, S.; Zehani, F.; Lejoyeux, M.; Geoffroy, P.A. Exploring Actigraphy as a Digital Phenotyping Measure: A Study on Differentiating Psychomotor Agitation and Retardation in Depression. Acta Psychiatr. Scand. 2025, 151, 401–411. [Google Scholar] [CrossRef]
- Raihan, M.; Bairagi, A.K.; Rahman, S. A Machine Learning Based Study to Predict Depression with Monitoring Actigraph Watch Data. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; IEEE: Karnataka, India, 2021; pp. 1–5. [Google Scholar]
- Darwish, B.A.; Rehman, S.U.; Sadek, I.; Salem, N.M.; Kareem, G.; Mahmoud, L.N. From Lab to Real-Life: A Three-Stage Validation of Wearable Technology for Stress Monitoring. MethodsX 2025, 14, 103205. [Google Scholar] [CrossRef]
- Abd Al-Alim, M.; Mubarak, R.M.; Salem, N.; Sadek, I. A Machine-Learning Approach for Stress Detection Using Wearable Sensors in Free-Living Environments. Comput. Biol. Med. 2024, 179, 108918. [Google Scholar] [CrossRef]
- Sheikh, M.; Qassem, M.; Kyriacou, P.A. Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Front. Digit. Health 2021, 3, 662811. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, H.; Park, M.J.; Jeon, H.J. Current Advances in Wearable Devices and Their Sensors in Patients with Depression. Front. Psychiatry 2021, 12, 672347. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Hiratsuka, T.; Hasegawa, K.; Watanabe, K.; Obara, Y.; Kariya, N.; Shinba, T.; Matsui, T. Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. Sensors 2023, 23, 3867. [Google Scholar] [CrossRef]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum Neurosci. 2018, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Reinertsen, E.; Clifford, G.D. A Review of Physiological and Behavioral Monitoring with Digital Sensors for Neuropsychiatric Illnesses. Physiol. Meas. 2018, 39, 05TR01. [Google Scholar] [CrossRef]
- Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Jeon, H.J.; Yu, H.Y.; Byun, S. Automatic Detection of Major Depressive Disorder Using Electrodermal Activity. Sci. Rep. 2018, 8, 17030. [Google Scholar] [CrossRef]
- Almaghrabi, S.A.; Clark, S.R.; Baumert, M. Bio-Acoustic Features of Depression: A Review. Biomed. Signal Process. Control. 2023, 85, 105020. [Google Scholar] [CrossRef]
- Yang, Y.; Fairbairn, C.; Cohn, J.F. Detecting Depression Severity from Vocal Prosody. IEEE Trans Affect. Comput. 2013, 4, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Chen, W.; Li, C.; Yu, C. Improving Speech Depression Detection Using Transfer Learning with Wav2vec 2.0 in Low-Resource Environments. Sci. Rep. 2024, 14, 9543. [Google Scholar] [CrossRef]
- Taguchi, T.; Tachikawa, H.; Nemoto, K.; Suzuki, M.; Nagano, T.; Tachibana, R.; Nishimura, M.; Arai, T. Major Depressive Disorder Discrimination Using Vocal Acoustic Features. J. Affect. Disord. 2018, 225, 214–220. [Google Scholar] [CrossRef]
- König, A.; Tröger, J.; Mallick, E.; Mina, M.; Linz, N.; Wagnon, C.; Karbach, J.; Kuhn, C.; Peter, J. Detecting Subtle Signs of Depression with Automated Speech Analysis in a Non-Clinical Sample. BMC Psychiatry 2022, 22, 830. [Google Scholar] [CrossRef]
- Sadeghi, M.; Richer, R.; Egger, B.; Schindler-Gmelch, L.; Rupp, L.H.; Rahimi, F.; Berking, M.; Eskofier, B.M. Harnessing Multimodal Approaches for Depression Detection Using Large Language Models and Facial Expressions. Npj Ment. Health Res. 2024, 3, 66. [Google Scholar] [CrossRef]
- Xu, P.; Peng, S.; Luo, Y.; Gong, G. Facial Expression Recognition: A Meta-Analytic Review of Theoretical Models and Neuroimaging Evidence. Neurosci. Biobehav. Rev. 2021, 127, 820–836. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, W.; Zhang, Y.; Xu, J.; Xu, Y. Leveraging Vision Transformers and Entropy-Based Attention for Accurate Micro-Expression Recognition. Sci. Rep. 2025, 15, 13711. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Yoshida, M.; Morita, K.; Fujimoto, M.; Yasuda, Y.; Yamamori, H.; Takahashi, J.; Miyata, S.; Okazaki, K.; Matsumoto, J.; et al. Gaze Behaviors during Free Viewing Revealed Differences in Visual Salience Processing across Four Major Psychiatric Disorders: A Mega-Analysis Study of 1012 Individuals. Mol. Psychiatry 2025, 30, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, Y.; Zhu, H.; Feng, H.; Shen, X.; Chen, Z. Emotional Stimulation Processing Characteristics in Depression: Meta-Analysis of Eye Tracking Findings. Front. Psychol. 2022, 13, 1089654. [Google Scholar] [CrossRef]
- Kong, X.; Yao, Y.; Wang, C.; Wang, Y.; Teng, J.; Qi, X. Automatic Identification of Depression Using Facial Images with Deep Convolutional Neural Network. Med. Sci. Monit. 2022, 28, e936409-1–e936409-12. [Google Scholar] [CrossRef]
- Yu, Y.; Li, W.; Zhao, Y.; Ye, J.; Zheng, Y.; Liu, X.; Wang, Q. Depression and Severity Detection Based on Body Kinematic Features: Using Kinect Recorded Skeleton Data of Simple Action. Front. Neurol. 2022, 13, 905917. [Google Scholar] [CrossRef]
- Thibodeau, R.; Jorgensen, R.S.; Kim, S. Depression, Anxiety, and Resting Frontal EEG Asymmetry: A Meta-Analytic Review. J. Abnorm. Psychol. 2006, 115, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Paul, S. Electroencephalogram (EEG) Signal Analysis for Diagnosis of Major Depressive Disorder (MDD): A Review. In Nanoelectronics, Circuits and Communication Systems; Nath, V., Mandal, J.K., Eds.; Springer: Singapore, 2019; pp. 323–335. [Google Scholar]
- Fingelkurts, A.A.; Rytsälä, H.; Suominen, K.; Isometsä, E.; Kähkönen, S. Impaired Functional Connectivity at EEG Alpha and Theta Frequency Bands in Major Depression. Hum. Brain Mapp. 2006, 28, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhang, W.; Zhou, H.; Zhang, S.; Chen, Z.; Yao, Z.; Lu, Q. Gamma Oscillations of Visual Cortex Underlying Emotion and Cognition Deficits Associated with Suicide Attempt in Major Depressive Disorder. Nat. Ment. Health 2024, 2, 924–934. [Google Scholar] [CrossRef]
- Salvadore, G.; Cornwell, B.R.; Sambataro, F.; Latov, D.; Colon-Rosario, V.; Carver, F.; Holroyd, T.; DiazGranados, N.; Machado-Vieira, R.; Grillon, C.; et al. Anterior Cingulate Desynchronization and Functional Connectivity with the Amygdala During a Working Memory Task Predict Rapid Antidepressant Response to Ketamine. Neuropsychopharmacology 2010, 35, 1415–1422. [Google Scholar] [CrossRef]
- Ho, C.S.H.; Wang, J.; Tay, G.W.N.; Ho, R.; Lin, H.; Li, Z.; Chen, N. Application of Functional Near-Infrared Spectroscopy and Machine Learning to Predict Treatment Response after Six Months in Major Depressive Disorder. Transl. Psychiatry 2025, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Bedrosian, T.A.; Nelson, R.J. Timing of Light Exposure Affects Mood and Brain Circuits. Transl. Psychiatry 2017, 7, e1017. [Google Scholar] [CrossRef]
- Burns, A.C.; Saxena, R.; Vetter, C.; Phillips, A.J.K.; Lane, J.M.; Cain, S.W. Time Spent in Outdoor Light Is Associated with Mood, Sleep, and Circadian Rhythm-Related Outcomes: A Cross-Sectional and Longitudinal Study in over 400,000 UK Biobank Participants. J. Affect. Disord. 2021, 295, 347–352. [Google Scholar] [CrossRef]
- von Salis, S.; Ehlert, U.; Fischer, S. Altered Experienced Thermoregulation in Depression—No Evidence for an Effect of Early Life Stress. Front. Psychiatry 2021, 12, 620656. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Müller, S.R.; Chen, X.; Peters, H.; Chaintreau, A.; Matz, S.C. Depression Predictions from GPS-Based Mobility Do Not Generalize Well to Large Demographically Heterogeneous Samples. Sci. Rep. 2021, 11, 14007. [Google Scholar] [CrossRef]
- Drougkas, G.; Bakker, E.M.; Spruit, M. Multimodal Machine Learning for Language and Speech Markers Identification in Mental Health. BMC Med. Inform. Decis. Mak. 2024, 24, 354. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Chen, J.; Liu, K.; Wang, Q.; He, J.; Jia, X.; Chen, J.; Liu, K.; Wang, Q.; He, J. Multimodal Depression Detection Based on an Attention Graph Convolution and Transformer. MBE 2025, 22, 652–676. [Google Scholar] [CrossRef]
- Li, M.; Wei, Y.; Zhu, Y.; Wei, S.; Wu, B. Enhancing Multimodal Depression Detection with Intra- and Inter-Sample Contrastive Learning. Inf. Sci. 2024, 684, 121282. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Qi, G. A Novel Multimodal Depression Diagnosis Approach Utilizing a New Hybrid Fusion Method. Biomed. Signal Process. Control. 2024, 96, 106552. [Google Scholar] [CrossRef]
- Cai, H.; Qu, Z.; Li, Z.; Zhang, Y.; Hu, X.; Hu, B. Feature-Level Fusion Approaches Based on Multimodal EEG Data for Depression Recognition. Inf. Fusion 2020, 59, 127–138. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, H.; Song, Y.; Tao, L.; Li, Y. Computer-Aided Recognition Based on Decision-Level Multimodal Fusion for Depression. IEEE J. Biomed. Health Inf. 2022, 26, 3466–3477. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Lai, Q.; Wang, W.; Chen, J.; Liu, H.; Srivastava, G.; Bashir, A.K.; Hu, X. IIFDD: Intra and Inter-Modal Fusion for Depression Detection with Multi-Modal Information from Internet of Medical Things. Inf. Fusion 2024, 102, 102017. [Google Scholar] [CrossRef]
- Xie, W.; Wang, C.; Lin, Z.; Luo, X.; Chen, W.; Xu, M.; Liang, L.; Liu, X.; Wang, Y.; Luo, H.; et al. Multimodal Fusion Diagnosis of Depression and Anxiety Based on CNN-LSTM Model. Comput. Med. Imaging Graph. 2022, 102, 102128. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Dou, Y.; Chen, X.; Zhou, J.; Xie, X.; Peng, S. An Adaptive Multi-Graph Neural Network with Multimodal Feature Fusion Learning for MDD Detection. Sci. Rep. 2024, 14, 28400. [Google Scholar] [CrossRef] [PubMed]
- Lyall, L.M.; Wyse, C.A.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Celis Morales, C.A.; Biello, S.M.; Mackay, D.; Ward, J.; et al. Association of Disrupted Circadian Rhythmicity with Mood Disorders, Subjective Wellbeing, and Cognitive Function: A Cross-Sectional Study of 91,105 Participants from the UK Biobank. Lancet Psychiatry 2018, 5, 507–514. [Google Scholar] [CrossRef]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal Cortisol Slopes and Mental and Physical Health Outcomes: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef]
- Walker, W.H.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Circadian Rhythm Disruption and Mental Health. Transl. Psychiatry 2020, 10, 28. [Google Scholar] [CrossRef]
- Balter, L.J.T.; Holding, B.C.; Petrovic, P.; Axelsson, J. The Rhythm of Mental Health: The Relationship of Chronotype with Psychiatric Trait Dimensions and Diurnal Variation in Psychiatric Symptoms. Transl. Psychiatry 2024, 14, 237. [Google Scholar] [CrossRef]
- Kim, K.M.; Han, S.M.; Heo, K.; Kim, W.-J.; Chu, M.K. Sex Differences in the Association between Chronotype and Risk of Depression. Sci. Rep. 2020, 10, 18512. [Google Scholar] [CrossRef]
- Booij, S.H.; Wigman, J.T.W.; Jacobs, N.; Thiery, E.; Derom, C.; Wichers, M.; Oravecz, Z. Cortisol Dynamics in Depression: Application of a Continuous-Time Process Model. Psychoneuroendocrinology 2020, 115, 104598. [Google Scholar] [CrossRef]
- Young, H.; Benton, D. We Should Be Using Nonlinear Indices When Relating Heart-Rate Dynamics to Cognition and Mood. Sci. Rep. 2015, 5, 16619. [Google Scholar] [CrossRef]
- Valenza, G.; Citi, L.; Garcia, R.G.; Taylor, J.N.; Toschi, N.; Barbieri, R. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control. Sci. Rep. 2017, 7, 42779. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, W.; Peng, C.-K.; Yang, A.C. Nonlinear Dynamical Analysis of Sleep Electroencephalography Using Fractal and Entropy Approaches. Sleep Med. Rev. 2018, 37, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Lo, L.-W.; Tsai, T.-Y.; Cheng, W.-H.; Lin, Y.-J.; Chang, S.-L.; Hu, Y.-F.; Chung, F.-P.; Chao, T.-F.; Liao, J.-N.; et al. Circadian Rhythm Dynamics on Multiscale Entropy Identifies Autonomic Dysfunction Associated with Risk of Ventricular Arrhythmias and near Syncope in Chronic Kidney Disease. J. Cardiol. 2020, 76, 542–548. [Google Scholar] [CrossRef]
- Bell, I.R.; Howerter, A.; Jackson, N.; Aickin, M.; Bootzin, R.R.; Brooks, A.J. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia. Homeopathy 2012, 101, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yan, C.; Qu, S.; Luo, G.; Liu, X.; Tian, F.; Dong, Q.; Li, X.; Hu, B. Resting-State Dynamic Functional Connectivity in Major Depressive Disorder: A Systematic Review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 135, 111076. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A.; et al. Resting-State Connectivity Biomarkers Define Neurophysiological Subtypes of Depression. Nat. Med. 2017, 23, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.S.; Krishnamurthy, K. A Comparison of Static and Dynamic Functional Connectivities for Identifying Subjects and Biological Sex Using Intrinsic Individual Brain Connectivity. Sci. Rep. 2019, 9, 5729. [Google Scholar] [CrossRef]
- Myin-Germeys, I.; Kasanova, Z.; Vaessen, T.; Vachon, H.; Kirtley, O.; Viechtbauer, W.; Reininghaus, U. Experience Sampling Methodology in Mental Health Research: New Insights and Technical Developments. World Psychiatry 2018, 17, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Mink, F.; Lutz, W.; Hehlmann, M.I. Ecological Momentary Assessment in Psychotherapy Research: A Systematic Review. Clin. Psychol. Rev. 2025, 117, 102565. [Google Scholar] [CrossRef]
- Jakstis, K.; Fischer, L.K. Urban Nature and Public Health: How Nature Exposure and Sociocultural Background Relate to Depression Risk. Int. J. Environ. Res. Public Health 2021, 18, 9689. [Google Scholar] [CrossRef]
- Freymueller, J.; Schmid, H.-L.; Senkler, B.; Lopez Lumbi, S.; Zerbe, S.; Hornberg, C.; McCall, T. Current Methodologies of Greenspace Exposure and Mental Health Research—A Scoping Review. Front. Public Health 2024, 12, 1360134. [Google Scholar] [CrossRef]
- Rugel, E.J.; Carpiano, R.M.; Henderson, S.B.; Brauer, M. Exposure to Natural Space, Sense of Community Belonging, and Adverse Mental Health Outcomes across an Urban Region. Environ. Res. 2019, 171, 365–377. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Song, Y.; Webster, C.; Xu, B.; Gong, P. Contrasting Inequality in Human Exposure to Greenspace between Cities of Global North and Global South. Nat. Commun. 2022, 13, 4636. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Liu, T.; Kording, K.P.; Ungar, L.H.; Kaiser, S.M.; Karr, C.J.; Mohr, D.C. Evaluation of Changes in Depression, Anxiety, and Social Anxiety Using Smartphone Sensor Features: Longitudinal Cohort Study. J. Med. Internet Res. 2021, 23, e22844. [Google Scholar] [CrossRef]
- Wang, Z.; Larrazabal, M.A.; Rucker, M.; Toner, E.R.; Daniel, K.E.; Kumar, S.; Boukhechba, M.; Teachman, B.A.; Barnes, L.E. Detecting Social Contexts from Mobile Sensing Indicators in Virtual Interactions with Socially Anxious Individuals. Proc. ACM Interact Mob. Wearable Ubiquitous Technol. 2023, 7, 134. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Nicholas, J.; Wong, Q.J.; Shaw, F.; Townsend, S.; Christensen, H. Using Mobile Phone Sensor Technology for Mental Health Research: Integrated Analysis to Identify Hidden Challenges and Potential Solutions. J. Med. Internet Res. 2018, 20, e10131. [Google Scholar] [CrossRef]
- Stamatis, C.A.; Meyerhoff, J.; Meng, Y.; Lin, Z.C.C.; Cho, Y.M.; Liu, T.; Karr, C.J.; Liu, T.; Curtis, B.L.; Ungar, L.H.; et al. Differential Temporal Utility of Passively Sensed Smartphone Features for Depression and Anxiety Symptom Prediction: A Longitudinal Cohort Study. npj Ment. Health Res. 2024, 3, 1. [Google Scholar] [CrossRef]
- Lamichhane, B.; Moukaddam, N.; Sabharwal, A. Mobile Sensing-Based Depression Severity Assessment in Participants with Heterogeneous Mental Health Conditions. Sci. Rep. 2024, 14, 18808. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.C.; Summers, B.; Wilhelm, S. Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors. J. Med. Internet Res. 2020, 22, e16875. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhou, H.; Ba, Q.; Zhou, Y.; Wang, L.; Li, G. Improving Depression Prediction Using a Novel Feature Selection Algorithm Coupled with Context-Aware Analysis. J. Affect. Disord. 2021, 295, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Colledani, D.; Barbaranelli, C.; Anselmi, P. Fast, Smart, and Adaptive: Using Machine Learning to Optimize Mental Health Assessment and Monitor Change over Time. Sci. Rep. 2025, 15, 6492. [Google Scholar] [CrossRef]
- Garcia-Ceja, E.; Riegler, M.; Nordgreen, T.; Jakobsen, P.; Oedegaard, K.J.; Tørresen, J. Mental Health Monitoring with Multimodal Sensing and Machine Learning: A Survey. Pervasive Mob. Comput. 2018, 51, 1–26. [Google Scholar] [CrossRef]
- Zhang, T.; Schoene, A.M.; Ji, S.; Ananiadou, S. Natural Language Processing Applied to Mental Illness Detection: A Narrative Review. Npj Digit. Med. 2022, 5, 46. [Google Scholar] [CrossRef]
- Assaad, R.H.; Mohammadi, M.; Poudel, O. Developing an Intelligent IoT-Enabled Wearable Multimodal Biosensing Device and Cloud-Based Digital Dashboard for Real-Time and Comprehensive Health, Physiological, Emotional, and Cognitive Monitoring Using Multi-Sensor Fusion Technologies. Sens. Actuators A Phys. 2025, 381, 116074. [Google Scholar] [CrossRef]
- Lemos, R.; Areias-Marques, S.; Ferreira, P.; O’Brien, P.; Beltrán-Jaunsarás, M.E.; Ribeiro, G.; Martín, M.; Del Monte-Millán, M.; López-Tarruella, S.; Massarrah, T.; et al. A Prospective Observational Study for a Federated Artificial Intelligence Solution for moniToring Mental Health Status after Cancer Treatment (FAITH): Study Protocol. BMC Psychiatry 2022, 22, 817. [Google Scholar] [CrossRef]
- Matcham, F.; Barattieri di San Pietro, C.; Bulgari, V.; de Girolamo, G.; Dobson, R.; Eriksson, H.; Folarin, A.A.; Haro, J.M.; Kerz, M.; Lamers, F.; et al. Remote Assessment of Disease and Relapse in Major Depressive Disorder (RADAR-MDD): A Multi-Centre Prospective Cohort Study Protocol. BMC Psychiatry 2019, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Shalbaf, R.; Bagherzadeh, S.; Shalbaf, A. Classification of Mental Workload Using Brain Connectivity and Machine Learning on Electroencephalogram Data. Sci. Rep. 2024, 14, 9153. [Google Scholar] [CrossRef]
- Saeb, S.; Zhang, M.; Karr, C.J.; Schueller, S.M.; Corden, M.E.; Kording, K.P.; Mohr, D.C. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. J. Med. Internet Res. 2015, 17, e4273. [Google Scholar] [CrossRef]
- Hollands, L.; Lambert, J.; Price, L.; Powell, D.; Greaves, C. Ecological Momentary Assessment of Mood and Physical Activity in People with Depression. J. Affect. Disord. 2020, 271, 293–299. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, M.; Bi, J.; Lin, S.; Wang, Q.; Yu, Y.; Ye, J.; Zheng, Y. Multimodal Depression Recognition and Analysis: Facial Expression and Body Posture Changes via Emotional Stimuli. J. Affect. Disord. 2025, 381, 44–54. [Google Scholar] [CrossRef]
- Figueroa, C.A.; Luo, T.; Aguilera, A.; Lyles, C.R. The Need for Feminist Intersectionality in Digital Health. Lancet Digit. Health 2021, 3, e526–e533. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Liu, X.; Zariffa, N.; Morris, A.D.; Denniston, A.K. Health Data Poverty: An Assailable Barrier to Equitable Digital Health Care. Lancet Digit. Health 2021, 3, e260–e265. [Google Scholar] [CrossRef]
- Vai, B.; Parenti, L.; Bollettini, I.; Cara, C.; Verga, C.; Melloni, E.; Mazza, E.; Poletti, S.; Colombo, C.; Benedetti, F. Predicting Differential Diagnosis between Bipolar and Unipolar Depression with Multiple Kernel Learning on Multimodal Structural Neuroimaging. Eur. Neuropsychopharmacol. 2020, 34, 28–38. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, P.; Niu, B.; Fan, T.; Wang, H.; Zhou, Y.; Chai, Y. Machine Learning-Based Discrimination of Unipolar Depression and Bipolar Disorder with Streamlined Shortlist in Adolescents of Different Ages. Comput. Biol. Med. 2024, 182, 109107. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Li, T.; Kornstein, S.G.; Friedman, E.S.; Rothschild, A.J.; Pedersen, R.; Ninan, P.; Keller, M. Correlation between Patient and Clinician Assessments of Depression Severity in the PREVENT Study. Psychiatry Res. 2010, 177, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Jia, X.; Li, H.; Zhao, B.; Yang, Y.; Ren, T.-L. Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment. Biosensors 2024, 14, 422. [Google Scholar] [CrossRef] [PubMed]
- Vairavan, S.; Rashidisabet, H.; Li, Q.S.; Ness, S.; Morrison, R.L.; Soares, C.N.; Uher, R.; Frey, B.N.; Lam, R.W.; Kennedy, S.H.; et al. Personalized Relapse Prediction in Patients with Major Depressive Disorder Using Digital Biomarkers. Sci. Rep. 2023, 13, 18596. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J.S.; Schultebraucks, K.; Galatzer-Levy, I.; Boeker, H.; Brühl, A.; Seifritz, E.; Kleim, B. Predicting Non-Response to Multimodal Day Clinic Treatment in Severely Impaired Depressed Patients: A Machine Learning Approach. Sci. Rep. 2022, 12, 5455. [Google Scholar] [CrossRef] [PubMed]
- LoParo, D.; Dunlop, B.W.; Nemeroff, C.B.; Mayberg, H.S.; Craighead, W.E. Prediction of Individual Patient Outcomes to Psychotherapy vs Medication for Major Depression. npj Ment. Health Res. 2025, 4, 4. [Google Scholar] [CrossRef]
- Tozzi, L.; Zhang, X.; Pines, A.; Olmsted, A.M.; Zhai, E.S.; Anene, E.T.; Chesnut, M.; Holt-Gosselin, B.; Chang, S.; Stetz, P.C.; et al. Personalized Brain Circuit Scores Identify Clinically Distinct Biotypes in Depression and Anxiety. Nat. Med. 2024, 30, 2076–2087. [Google Scholar] [CrossRef]
- Zhao, K.; Xie, H.; Fonzo, G.A.; Tong, X.; Carlisle, N.; Chidharom, M.; Etkin, A.; Zhang, Y. Individualized fMRI Connectivity Defines Signatures of Antidepressant and Placebo Responses in Major Depression. Mol. Psychiatry 2023, 28, 2490–2499. [Google Scholar] [CrossRef]
- Williams, L.M. Getting Personalized: Brain Scan Biomarkers for Guiding Depression Interventions. Am. J. Psychiatry 2017, 174, 503–505. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhao, K.; Wei, X.; Carlisle, N.B.; Keller, C.J.; Oathes, D.J.; Fonzo, G.A.; Zhang, Y. Deep Graph Learning of Multimodal Brain Networks Defines Treatment-Predictive Signatures in Major Depression. Mol. Psychiatry 2025, 1–12. [Google Scholar] [CrossRef]
- Bischof, J.; Fletcher, G.; Verkade, P.; Kuntner, C.; Fernandez-Rodriguez, J.; Chaabane, L.; Rose, L.A.; Walter, A.; Vandenbosch, M.; van Zandvoort, M.A.M.J.; et al. Multimodal Bioimaging across Disciplines and Scales: Challenges, Opportunities and Breaking down Barriers. npj Imaging 2024, 2, 5. [Google Scholar] [CrossRef]
- Seok, D.; Lee, S.; Kim, M.; Cho, J.; Kim, C. Motion Artifact Removal Techniques for Wearable EEG and PPG Sensor Systems. Front. Electron. 2021, 2, 685513. [Google Scholar] [CrossRef]
- Reddy, R.K.; Pooni, R.; Zaharieva, D.P.; Senf, B.; El Youssef, J.; Dassau, E.; Doyle Iii, F.J.; Clements, M.A.; Rickels, M.R.; Patton, S.R.; et al. Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities and Types of Structured Exercise: Evaluation Study. JMIR mHealth uHealth 2018, 6, e10338. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Giessing, L.; Frenkel, M.O.; Koehler, K.; Holmberg, H.-C.; Sperlich, B. Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR mHealth uHealth 2020, 8, e16716. [Google Scholar] [CrossRef]
- Çatal, Y.; Keskin, K.; Wolman, A.; Klar, P.; Smith, D.; Northoff, G. Flexibility of Intrinsic Neural Timescales during Distinct Behavioral States. Commun. Biol. 2024, 7, 1667. [Google Scholar] [CrossRef]
- Klar, P.; Çatal, Y.; Fogel, S.; Jocham, G.; Langner, R.; Owen, A.M.; Northoff, G. Auditory Inputs Modulate Intrinsic Neuronal Timescales during Sleep. Commun. Biol. 2023, 6, 1180. [Google Scholar] [CrossRef]
- Zheng, G.; Zheng, W.; Zhang, Y.; Wang, J.; Chen, M.; Wang, Y.; Cai, T.; Yao, Z.; Hu, B. An Attention-Based Multi-Modal MRI Fusion Model for Major Depressive Disorder Diagnosis. J. Neural Eng. 2023, 20, 066005. [Google Scholar] [CrossRef]
- Sun, L.; Wang, P.; Zheng, Y.; Wang, J.; Wang, J.; Xue, S.-W. Dissecting Heterogeneity in Major Depressive Disorder via Normative Model-Driven Subtyping of Functional Brain Networks. J. Affect. Disord. 2025, 377, 1–13. [Google Scholar] [CrossRef]
- Mohr, D.C.; Shilton, K.; Hotopf, M. Digital Phenotyping, Behavioral Sensing, or Personal Sensing: Names and Transparency in the Digital Age. Npj Digit. Med. 2020, 3, 45. [Google Scholar] [CrossRef]
- Celik, Y.; Godfrey, A. Bringing It All Together: Wearable Data Fusion. Npj Digit. Med. 2023, 6, 149. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Hope, J.; Beckerle, T.M.; Cheng, P.-H.; Viavattine, Z.; Feldkamp, M.; Fausner, S.M.L.; Saxena, K.; Ko, E.; Hryb, I.; Carter, R.E.; et al. Brain-Wide Neural Recordings in Mice Navigating Physical Spaces Enabled by Robotic Neural Recording Headstages. Nat. Methods 2024, 21, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Nidhi; Prakash, S.; Sinha, P.; Yang, T.; Rathore, R.S.; Wang, L. Beyond Boundaries a Hybrid Cellular Potts and Particle Swarm Optimization Model for Energy and Latency Optimization in Edge Computing. Sci. Rep. 2025, 15, 6266. [Google Scholar] [CrossRef]
- Andriulo, F.C.; Fiore, M.; Mongiello, M.; Traversa, E.; Zizzo, V. Edge Computing and Cloud Computing for Internet of Things: A Review. Informatics 2024, 11, 71. [Google Scholar] [CrossRef]
- Dreyer, P.; Roc, A.; Pillette, L.; Rimbert, S.; Lotte, F. A Large EEG Database with Users’ Profile Information for Motor Imagery Brain-Computer Interface Research. Sci. Data 2023, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A. EEG Is Better Left Alone. Sci. Rep. 2023, 13, 2372. [Google Scholar] [CrossRef]
- Mehrani, M.; Attarzadeh, I.; Hosseinzadeh, M. Sampling Rate Prediction of Biosensors in Wireless Body Area Networks Using Deep-Learning Methods. Simul. Model. Pract. Theory 2020, 105, 102101. [Google Scholar] [CrossRef]
- Dixon, A.M.R.; Allstot, E.G.; Gangopadhyay, D.; Allstot, D.J. Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 156–166. [Google Scholar] [CrossRef]
- Min, J.; Demchyshyn, S.; Sempionatto, J.R.; Song, Y.; Hailegnaw, B.; Xu, C.; Yang, Y.; Solomon, S.; Putz, C.; Lehner, L.E.; et al. An Autonomous Wearable Biosensor Powered by a Perovskite Solar Cell. Nat. Electron. 2023, 6, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Materia, F.T.; Smyth, J.M. Acceptability and Concerns about Innovative Wearable Health Sensors in Persons with and without Chronic Disease Diagnosis. Internet Interv. 2024, 35, 100702. [Google Scholar] [CrossRef]
- Radüntz, T.; Meffert, B. User Experience of 7 Mobile Electroencephalography Devices: Comparative Study. JMIR mHealth uHealth 2019, 7, e14474. [Google Scholar] [CrossRef]
- Pevnick, J.M.; Birkeland, K.; Zimmer, R.; Elad, Y.; Kedan, I. Wearable Technology for Cardiology: An Update and Framework for the Future. Trends Cardiovasc. Med. 2018, 28, 144–150. [Google Scholar] [CrossRef]
- Vaportzis, E.; Clausen, M.G.; Gow, A.J. Older Adults Perceptions of Technology and Barriers to Interacting with Tablet Computers: A Focus Group Study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable Activity Trackers, Accuracy, Adoption, Acceptance and Health Impact: A Systematic Literature Review. J. Biomed. Inform. 2019, 93, 103153. [Google Scholar] [CrossRef]
- Patel, M.S.; Benjamin, E.J.; Volpp, K.G.; Fox, C.S.; Small, D.S.; Massaro, J.M.; Lee, J.J.; Hilbert, V.; Valentino, M.; Taylor, D.H.; et al. Effect of a Game-Based Intervention Designed to Enhance Social Incentives to Increase Physical Activity Among Families: The BE FIT Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 1586–1593. [Google Scholar] [CrossRef]
- Dobrescu, R.; Merezeanu, D.; Mocanu, S. Context-Aware Control and Monitoring System with IoT and Cloud Support. Comput. Electron. Agric. 2019, 160, 91–99. [Google Scholar] [CrossRef]
- Chen, S.; Conwell, Y.; Cerulli, C.; Xue, J.; Chiu, H.F.K. Primary Care Physicians’ Perceived Barriers on the Management of Depression in China Primary Care Settings. Asian J. Psychiatry 2018, 36, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Ienca, M.; Andorno, R. Towards New Human Rights in the Age of Neuroscience and Neurotechnology. Life Sci. Soc. Policy 2017, 13, 5. [Google Scholar] [CrossRef]
- Ethical Development of Digital Phenotyping Tools for Mental Health Applications: Delphi Study. JMIR mHealth uHealth 2021, 9, e27343. [CrossRef]
- Froelicher, D.; Troncoso-Pastoriza, J.R.; Raisaro, J.L.; Cuendet, M.A.; Sousa, J.S.; Cho, H.; Berger, B.; Fellay, J.; Hubaux, J.-P. Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic Encryption. Nat. Commun. 2021, 12, 5910. [Google Scholar] [CrossRef]
- Singh, A.; Chatterjee, K. Edge Computing Based Secure Health Monitoring Framework for Electronic Healthcare System. Clust. Comput. 2023, 26, 1205–1220. [Google Scholar] [CrossRef]
- Timothy, S.J. Constraints on Sharing Mental Health and Substance-Use Treatment Information Imposed by Federal and State Medical Records Privacy Laws. In Improving the Quality of Health Care for Mental and Substance-Use Conditions: Quality Chasm Series; National Academies Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Steindl, E. Safeguarding Privacy and Efficacy in E-Mental Health: Policy Options in the EU and Australia. Int. Data Priv. Law 2023, 13, 207–224. [Google Scholar] [CrossRef]
- Firdaus, M.; Larasati, H.T.; Hyune-Rhee, K. Blockchain-Based Federated Learning with Homomorphic Encryption for Privacy-Preserving Healthcare Data Sharing. Internet Things 2025, 31, 101579. [Google Scholar] [CrossRef]
- Provenza, N.R.; Matteson, E.R.; Allawala, A.B.; Barrios-Anderson, A.; Sheth, S.A.; Viswanathan, A.; McIngvale, E.; Storch, E.A.; Frank, M.J.; McLaughlin, N.C.R.; et al. The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Front. Neurosci. 2019, 13, 152. [Google Scholar] [CrossRef] [PubMed]
Biosensor Type | Target Biomarkers | Strengths | Limitations | Reference |
---|---|---|---|---|
Electrochemical Biosensors | Serotonin; dopamine; norepinephrine; antidepressant | Precise neurotransmitter detection with continuous monitoring capabilities | Complex matrices cause electrode fouling | [21,22] |
HRV/ECG Sensors | Heart rate variability; cardiac rhythms; autonomic function | Non-invasive measurement | Multiple confounding factors interference | [45,59] |
EEG-based Wearables | Neural oscillations; frontal alpha asymmetry | Non-invasive EEG directly measures | Movement artifacts and spatial resolution limitations | [35,43,60] |
Actigraphy/ Movement Sensors | Physical activity; sleep patterns; psychomotor changes | Highly unobtrusive; extended wear time; objective behavioral metrics | Indirect measures; limited specificity for depression; environmental confounds | [50,52,61] |
Skin Conductance Sensors | Electrodermal activity; sympathetic nervous system activation | Simple integration into wearables | Environmental influences; low specificity for depression | [58,62] |
Multi-modal Integrated Systems | Combined physiological, behavioral, and environmental | Comprehensive assessment | System complexity; increased cost | [17] |
Technology/System | Accuracy | Sensitivity | Specificity | Device Form Factor | Study Setting | Reference |
---|---|---|---|---|---|---|
Smartphone + Wearables Integration | 89% | 87% | 93% | Phone + wrist/chest | Real-world | [15] |
HRV-based Screening | NR | 73.3% | 80.6% | Wrist-worn | Clinical | [59] |
EEG-based Classification (ML algorithms) | 90% | NR | NR | Head-worn (multi-electrode) | Laboratory | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Lou, Z.; Shah, P.T.; Wu, C.; Liu, R.; Xie, W.; Zhang, S. Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives. Sensors 2025, 25, 4858. https://doi.org/10.3390/s25154858
Zhao X, Lou Z, Shah PT, Wu C, Liu R, Xie W, Zhang S. Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives. Sensors. 2025; 25(15):4858. https://doi.org/10.3390/s25154858
Chicago/Turabian StyleZhao, Xuanzhu, Zhangrong Lou, Pir Tariq Shah, Chengjun Wu, Rong Liu, Wen Xie, and Sheng Zhang. 2025. "Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives" Sensors 25, no. 15: 4858. https://doi.org/10.3390/s25154858
APA StyleZhao, X., Lou, Z., Shah, P. T., Wu, C., Liu, R., Xie, W., & Zhang, S. (2025). Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives. Sensors, 25(15), 4858. https://doi.org/10.3390/s25154858