Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome
Abstract
1. Introduction
1.1. Overview of Chronic Coronary Syndromes
1.2. Introduction to Sensors and Their Application in Healthcare
1.3. Objectives of the Paper
2. Use of Sensors in Early Detection of CCS and Diagnosis
2.1. Rationale for Sensors’ Use in CCS Diagnosis
2.2. Sensor Technologies in the Diagnosis of CCS
2.2.1. Wearable Sensors
ECG-Based Wearables
Photoplethysmography (PPG)-Based Sensors
Phonocardiogram (PCG)-Based Sensors
2.2.2. Implantable Sensors
Insertable Cardiac Monitors (ICMs)
Intracardiac Devices (ICDs and CRT-Ds)
Impedance Monitoring
2.2.3. Smart Stents
2.2.4. Biochemical Sensors
2.2.5. Exhaled Breath Analysis
Sensor Type | Technology Used | Features | Clinical Applications | Key Studies |
---|---|---|---|---|
Wearable Sensors | ECG, PPG, PCG | Non-invasive, continuous monitoring; embedded in smartwatches, patches, etc. | Arrhythmia, ischemia, heart rate variability | |
ECG-based | Electrodes measuring the heart’s electrical signals | Detects ST-segment changes, arrhythmias, AF detection | Arrhythmias, myocardial infarction detection | Barrett et al. (2014) [33], Spaccarotella et al. (2020) [34], Jung et al. (2024) [35], Turakhia et al. (2019) [21] |
PPG-based | LED + photodetector, measures blood volume changes | HR and HRV monitoring; limited by motion artifacts | Long-term autonomic profiling, CAD prognosis | Kotecha et al. (2012) [38], Miller et al. (2022) [39], Vicente-Samper et al. (2023) [40] |
PCG-based | Microphones detecting heart sounds | Detects murmurs, turbulent flow; enhanced by ML/AI | Coronary artery screening, differentiation of CCS vs. non-CCS | Fynn et al. (2025) [42], Sun et al. (2024) [43] |
Implantable Sensors | ICMs, ICDs, CRT-Ds, impedance monitoring | Long-term, high-resolution ECG and impedance monitoring | Arrhythmia detection, ischemia, heart failure prediction | |
Insertable Cardiac Monitors (ICMs) | Subcutaneous ECG monitors | Single-lead, multi-year monitoring | Arrhythmia detection, indirect ischemia monitoring | Sanna et al. (2014) [44], Bernstein et al. (2021) [45], Giancaterino et al. (2018) [46] |
ICDs / CRT-Ds | Implanted defibrillators with ST-segment + impedance monitoring | Real-time ischemia detection; fluid overload monitoring | Silent ischemia, heart failure | Fischell et al. (2010) [47], Gibson et al. (2019) [48], Rao et al. (2024) [49] |
Impedance monitoring | Intrathoracic impedance sensing (in ICDs/CRT-Ds) | Detects fluid overload; combined with clinical data for heart failure prediction | Heart failure risk and early decompensation | Abraham et al. (2011) [50], Böhm et al. (2016) [51], |
Smart Stents | Pressure/flow sensors embedded in stents | Wireless telemetry, resonance detection | In-stent restenosis detection, flow dynamics | X. Chen et al. (2014) [53], Kim et al. (2022) [52], Chaparro-Rico et al. (2020) [54], Oyunbaatar et al. (2023) [55] |
Biochemical Sensors | Electrochemical/optical sensors | Detect troponin, IMA, lactate, ROS; lab-on-chip integration | Early ischemia detection, risk stratification | Sengupta et al. (2023) [57], Li et al. (2013) [58], Wu et al. (2017) [59], Q. Chen et al. (2023) [56] |
Exhaled Breath Analysis | GC-MS, eNose, VOCs profiling | Non-invasive, detects VOCs related to ischemia | CCS detection, obstructive vs. non-obstructive CAD, risk stratification | Lombardi et al. (2024) [60], Nardi Agmon et al. (2022) [61], Segreti et al. (2020) [62] |
2.3. Routinary Use in Clinical Practice
3. Controlling Risk Factors and Monitoring for the Detection of Disease Progression
4. Assessing Treatment Response
4.1. Real-Time Feedback on the Efficacy of Pharmacological or Interventional Treatments
4.2. Personalized Therapy Based on Biosensor Readings
5. Future Perspectives and Innovations
5.1. Nanotechnology, Advanced Materials, and Miniaturization
5.2. Integration with Artificial Intelligence and Machine Learning
5.3. Remote Control and Telemedicine
6. Current Challenges and Limitations
6.1. Potential for False Positives/Negatives in Biosensor Readings and Consequences in Clinical Practice
6.2. Economic Considerations for Widespread Adoption and Availability in Low-Resource Settings
6.3. Need for Robust Algorithms and Platforms to Handle Large Volumes of Data
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. Eur. Heart. J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Karamzad, N.; Singh, K.; Carson-Chahhoud, K.; Adams, C.; Nejadghaderi, S.A.; Almasi-Hashiani, A.; Sullman, M.J.M.; Mansournia, M.A.; Bragazzi, N.L.; et al. Burden of Ischemic Heart Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019. Eur. J. Prev. Cardiol. 2022, 29, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Cheng, Z.; Zhang, Y.; Li, Y.; Mei, D. The Impact of Medication Adherence on Clinical Outcomes of Coronary Artery Disease: A Meta-Analysis. Eur. J. Prev. Cardiol. 2017, 24, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Riddlesworth, T.; Ruedy, K.; Ahmann, A.; Bergenstal, R.; Haller, S.; Kollman, C.; Kruger, D.; McGill, J.B.; Polonsky, W.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults with Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA 2017, 317, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Braebon. DentiTrac. 2015. Available online: https://www2.braebon.com/products/dentitrac (accessed on 29 May 2025).
- Cui, J.; Duque-Lopez, A.; Brinkmann, G.; Joseph, B.; Faust, L.; Stabile, A.; Ethridge, J.; Worrell, G.; Dubey, D.; Brinkmann, B. Automated Detection of Faciobrachial Dystonic Seizures Related Events in LGI1 Autoimmune Encephalitis Patients with Wearables. medRxiv 2025. 2025.03.07.25323205. [Google Scholar] [CrossRef]
- Implantable & Wearable Medical Devices for Chronic Obstructive Pulmonary Disease|NIHR. Available online: https://www.nihr.ac.uk/implantable-wearable-medical-devices-chronic-obstructive-pulmonary-disease (accessed on 29 May 2025).
- Moraveji, N.; Golz, P.; Hollenbach, J.; Holt, M.; Murray, R. Long-Term, Ambulatory Respiratory Monitoring of COPD Patients Using Garment-Adhered Sensors. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications, İstanbul, Turkey, 26–28 June 2019. [Google Scholar] [CrossRef]
- Stamenova, V.; Liang, K.; Yang, R.; Engel, K.; van Lieshout, F.; Lalingo, E.; Cheung, A.; Erwood, A.; Radina, M.; Greenwald, A.; et al. Technology-Enabled Self-Management of Chronic Obstructive Pulmonary Disease With or Without Asynchronous Remote Monitoring: Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e18598. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. Peer Review Committee Members. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESC Scientific Document Group. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Tison, G.H.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.; Gladstone, R.A.; et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 2018, 3, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016, 13, e1001953. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The Emerging Field of Mobile Health. Sci. Transl. Med. 2015, 7, 283rv3. [Google Scholar] [CrossRef] [PubMed]
- van Waardhuizen, C.N.; Khanji, M.Y.; Genders, T.S.S.; Ferket, B.S.; Fleischmann, K.E.; Hunink, M.G.M.; Petersen, S.E. Comparative Cost-Effectiveness of Non-Invasive Imaging Tests in Patients Presenting with Chronic Stable Chest Pain with Suspected Coronary Artery Disease: A Systematic Review. Eur. Heart J.-Qual. Care Clin. Outcomes 2016, 2, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef] [PubMed]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart Wearable Devices in Cardiovascular Care: Where We Are and How to Move Forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef] [PubMed]
- McConnell, M.V.; Shcherbina, A.; Pavlovic, A.; Homburger, J.R.; Goldfeder, R.L.; Waggot, D.; Cho, M.K.; Rosenberger, M.E.; Haskell, W.L.; Myers, J.; et al. Feasibility of Obtaining Measures of Lifestyle from a Smartphone App: The MyHeart Counts Cardiovascular Health Study. JAMA Cardiol. 2017, 2, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and Design of a Large-Scale, App-Based Study to Identify Cardiac Arrhythmias Using a Smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Libby, P. Acute Coronary Syndromes: The Way Forward from Mechanisms to Precision Treatment. Circulation 2017, 136, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Shvilkin, A.; Vukajlović, D.; Bojović, B.P.; Hadžievski, L.R.; Vajdic, B.; Atanasoski, V.A.; Miletić, M.N.; Zimetbaum, P.J.; Gibson, C.M.; Vukčević, V. Coronary Artery Occlusion Detection Using 3-Lead ECG System Suitable for Credit Card-Size Personal Device Integration. JACC Adv. 2023, 2, 100454. [Google Scholar] [CrossRef] [PubMed]
- Simpson, T.F.; Goldschlager, N. Sudden Cardiac Death Preceded by ST Segment Elevations during ECG Patch Monitoring. J. Electrocardiol. 2018, 51, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization: The LINK-HF Multicenter Study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef] [PubMed]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned from Hospitalized Heart Failure Registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Taborsky, M.; Glikson, M.; Heinrich, U.; Schumacher, B.; Katz, A.; Brachmann, J.; Lewalter, T.; Goette, A.; Block, M.; et al. Implant-Based Multiparameter Telemonitoring of Patients with Heart Failure (IN-TIME): A Randomised Controlled Trial. Lancet 2014, 384, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Izmailova, E.S.; Middleton, D.; Yunis, R.; Lakeland, J.; Sowalsky, K.; Kling, J.; Ritchie, A.; Guo, C.C.; Byrom, B.; Kern, S. Implementing Sensor-Based Digital Health Technologies in Clinical Trials: Key Considerations from the eCOA Consortium. Clin. Transl. Sci. 2024, 17, e70054. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Zhang, H.; Liu, T.; Liang, Z.; Xia, Y.; Yan, L.; Xing, Y.; Shi, H.; Li, S.; et al. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 74, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lip, G.Y. Mobile Health for Cardiovascular Disease: The New Frontier for AF Management: Observations from the Huawei Heart Study and mAFA-II Randomised Trial. Arrhythmia Electrophysiol. Rev. 2020, 9, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Apple Heart Study Investigators. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Barrett, P.M.; Komatireddy, R.; Haaser, S.; Topol, S.; Sheard, J.; Encinas, J.; Fought, A.J.; Topol, E.J. Comparison of 24-Hour Holter Monitoring with 14-Day Novel Adhesive Patch Electrocardiographic Monitoring. Am. J. Med. 2014, 127, 95.e11–95.e17. [Google Scholar] [CrossRef] [PubMed]
- Spaccarotella, C.A.M.; Polimeni, A.; Migliarino, S.; Principe, E.; Curcio, A.; Mongiardo, A.; Sorrentino, S.; De Rosa, S.; Indolfi, C. Multichannel Electrocardiograms Obtained by a Smartwatch for the Diagnosis of ST-Segment Changes. JAMA Cardiol. 2020, 5, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kang, I.-S.; Shin, S.; Kim, C.; Park, J. Handheld 6-Lead ECG for Early Detection of Acute Inferior Wall ST-T Segment Elevation Myocardial Infarction: HINT-MI Study Design and Rationale. Medicina 2024, 60, 1164. [Google Scholar] [CrossRef] [PubMed]
- Zompanti, A.; Sabatini, A.; Grasso, S.; Pennazza, G.; Ferri, G.; Barile, G.; Chello, M.; Lusini, M.; Santonico, M. Development and Test of a Portable ECG Device with Dry Capacitive Electrodes and Driven Right Leg Circuit. Sensors 2021, 21, 2777. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Huang, D.Y.; Fang, W.C. A Non-Contact ECG Sensing System with Motion Artifact Equalization. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016. [Google Scholar] [CrossRef]
- Kotecha, D.; New, G.; Flather, M.D.; Eccleston, D.; Pepper, J.; Krum, H. Five-Minute Heart Rate Variability Can Predict Obstructive Angiographic Coronary Disease. Heart 2012, 98, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Sargent, C.; Roach, G.D. A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults. Sensors 2022, 22, 6317. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Samper, J.M.; Tamantini, C.; Ávila-Navarro, E.; De La Casa-Lillo, M.Á.; Zollo, L.; Sabater-Navarro, J.M.; Cordella, F. An ML-Based Approach to Reconstruct Heart Rate from PPG in Presence of Motion Artifacts. Biosensors 2023, 13, 718. [Google Scholar] [CrossRef] [PubMed]
- Zompanti, A.; Santonico, M.; Pennazza, G. Design, Development and Test of Electronic Interface for Photoplethysmography Devices. In Proceedings of SIE 2023, Proceedings of the 54th Annual Meeting of the Italian Electronics Society, Noto, Italy, 6–8 September 2023; Ciofi, C., Limiti, E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 166–172. [Google Scholar] [CrossRef]
- Fynn, M.; Mandana, K.; Rashid, J.; Nordholm, S.; Rong, Y.; Saha, G. Practicality Meets Precision: Wearable Vest with Integrated Multi-Channel PCG Sensors for Effective Coronary Artery Disease Pre-Screening. Comput. Biol. Med. 2025, 189, 109904. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, X.; Liu, C.; Wang, X.; Liu, Y.; Zhao, S.; Zhang, M. Enhanced CAD Detection Using Novel Multi-Modal Learning: Integration of ECG, PCG, and Coupling Signals. Bioengineering 2024, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Sanna, T.; Diener, H.-C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. CRYSTAL AF Investigators. Cryptogenic Stroke and Underlying Atrial Fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, R.A.; Kamel, H.; Granger, C.B.; Piccini, J.P.; Sethi, P.P.; Katz, J.M.; Vives, C.A.; Ziegler, P.D.; Franco, N.C.; Schwamm, L.H.; et al. Effect of Long-Term Continuous Cardiac Monitoring vs Usual Care on Detection of Atrial Fibrillation in Patients With Stroke Attributed to Large- or Small-Vessel Disease: The STROKE-AF Randomized Clinical Trial. JAMA 2021, 325, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Giancaterino, S.; Lupercio, F.; Nishimura, M.; Hsu, J.C. Current and Future Use of Insertable Cardiac Monitors. JACC Clin. Electrophysiol 2018, 4, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Fischell, T.A.; Fischell, D.R.; Avezum, A.; John, M.S.; Holmes, D.; Foster, M.; Kovach, R.; Medeiros, P.; Piegas, L.; Guimaraes, H.; et al. Initial Clinical Results Using Intracardiac Electrogram Monitoring to Detect and Alert Patients during Coronary Plaque Rupture and Ischemia. J. Am. Coll. Cardiol. 2010, 56, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Holmes, D.; Mikdadi, G.; Presser, D.; Wohns, D.; Yee, M.K.; Kaplan, A.; Ciuffo, A.; Eberly, A.L.; Iteld, B.; et al. Implantable Cardiac Alert System for Early Recognition of ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Chadha, A.; Rao, A.; Khandavalli, A.; Rao, S. Utility of the AngelMed Guardian System in Myocardial Bridging: A Case Report. Egypt. Heart. J. 2024, 76, 138. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Compton, S.; Haas, G.; Foreman, B.; Canby, R.C.; Fishel, R.; McRae, S.; Toledo, G.B.; Sarkar, S.; Hettrick, D.A.; et al. Intrathoracic Impedance vs Daily Weight Monitoring for Predicting Worsening Heart Failure Events: Results of the Fluid Accumulation Status Trial (FAST). Congest. Heart Fail. 2011, 17, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Drexler, H.; Oswald, H.; Rybak, K.; Bosch, R.; Butter, C.; Klein, G.; Gerritse, B.; Monteiro, J.; Israel, C.; et al. OptiLink HF Study Investigators. Fluid Status Telemedicine Alerts for Heart Failure: A Randomized Controlled Trial. Eur. Heart J. 2016, 37, 3154–3163. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Oyunbaatar, N.-E.; Shanmugasundaram, A.; Jeong, Y.-J.; Park, J.; Lee, D.-W. Stress Induced Self-Rollable Smart-Stent-Based U-Health Platform for in-Stent Restenosis Monitoring. Analyst 2022, 147, 4793–4803. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Brox, D.; Assadsangabi, B.; Hsiang, Y.; Takahata, K. Intelligent Telemetric Stent for Wireless Monitoring of Intravascular Pressure and Its in Vivo Testing. Biomed. Microdevices 2014, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Chaparro-Rico, B.D.M.; Sebastiano, F.; Cafolla, D. A Smart Stent for Monitoring Eventual Restenosis: Computational Fluid Dynamic and Finite Element Analysis in Descending Thoracic Aorta. Machines 2020, 8, 81. [Google Scholar] [CrossRef]
- Oyunbaatar, N.-E.; Kim, D.-S.; Shanmugasundaram, A.; Kim, S.-H.; Jeong, Y.-J.; Jo, J.; Kwon, K.; Choi, E.; Lee, D.-W. Implantable Self-Reporting Stents for Detecting In-Stent Restenosis and Cardiac Functional Dynamics. ACS Sens. 2023, 8, 4542–4553. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, W.; Wang, K.; Han, Z.; Yang, C. Methods for Detecting of Cardiac Troponin I Biomarkers for Myocardial Infarction Using Biosensors: A Narrative Review of Recent Research. J. Thorac. Dis. 2023, 15, 5112–5121. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Biswal, S.; Titus, J.; Burman, A.; Reddy, K.; Fulwani, M.C.; Khan, A.; Deshpande, N.; Shrivastava, S.; Yanamala, N.; et al. A Novel Breakthrough in Wrist-Worn Transdermal Troponin-I-Sensor Assessment for Acute Myocardial Infarction. Eur. Heart J. Digit. Health 2023, 4, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, X.; Yang, M.; Chen, M.-M.; Chen, L.-C.; Xiong, X.-L. A Gold Nanoparticles Enhanced Surface Plasmon Resonance Immunosensor for Highly Sensitive Detection of Ischemia-Modified Albumin. Sensors 2013, 13, 12794–12803. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dong, M.; Santos, S.; Rigatto, C.; Liu, Y.; Lin, F. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors 2017, 17, 2934. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, M.; Segreti, A.; Miglionico, M.; Pennazza, G.; Tocca, L.; Amendola, L.; Vergallo, R.; Di Sciascio, G.; Porto, I.; Grigioni, F.; et al. Breath Analysis via Gas Chromatography–Mass Spectrometry (GC-MS) in Chronic Coronary Syndrome (CCS): A Proof-of-Concept Study. J. Clin. Med. 2024, 13, 5857. [Google Scholar] [CrossRef] [PubMed]
- Nardi Agmon, I.; Broza, Y.Y.; Alaa, G.; Eisen, A.; Hamdan, A.; Kornowski, R.; Haick, H. Detecting Coronary Artery Disease Using Exhaled Breath Analysis. Cardiology 2022, 147, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Segreti, A.; Incalzi, R.A.; Lombardi, M.; Miglionico, M.; Nusca, A.; Pennazza, G.; Santonico, M.; Grasso, S.; Grigioni, F.; Di Sciascio, G. Characterization of Inflammatory Profile by Breath Analysis in Chronic Coronary Syndromes. J. Cardiovasc. Med. 2020, 21, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Collins, N.M.; Collins, C.S.; West, C.P.; Lerman, L.O.; Lerman, A. Digital Health Interventions for the Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2015, 90, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, T.; Olds, T.; Curtis, R.; Blake, H.; Crozier, A.J.; Dankiw, K.; Dumuid, D.; Kasai, D.; O’Connor, E.; Virgara, R.; et al. Effectiveness of Wearable Activity Trackers to Increase Physical Activity and Improve Health: A Systematic Review of Systematic Reviews and Meta-Analyses. Lancet Digit. Health 2022, 4, e615–e626. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, A.; Kontopantelis, E.; Adeniji, C.; van Marwijk, H.; McMillian, B.; Bower, P.; Panagioti, M. Interventions Using Wearable Physical Activity Trackers Among Adults with Cardiometabolic Conditions: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2021, 4, e2116382. [Google Scholar] [CrossRef] [PubMed]
- Düsing, P.; Schirmer, S.H.; Schäfer, S.; Krogmann, A.; Sinning, J.-M.; Werner, N.; Bönner, F.; Sedaghat, A.; Müller, C.; Eckardt, I.; et al. A Smartphone-Guided Secondary Prevention Digital Health Application Reduces Systolic Blood Pressure in Patients with Chronic Coronary Syndrome and Insufficient Blood Pressure Control. Front. Cardiovasc. Med. 2025, 12, 1515598. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Rawstorn, J.C.; Stewart, R.A.H.; Benatar, J.; Whittaker, R.; Rolleston, A.; Jiang, Y.; Gao, L.; Moodie, M.; Warren, I.; et al. Effects and Costs of Real-Time Cardiac Telerehabilitation: Randomised Controlled Non-Inferiority Trial. Heart 2019, 105, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Khan, M.S.; Gasior, T.; Erickson, T.R.; Vlajnic, V.; Kramer, F.; Blaustein, R.O.; Goldsbury, D.; Roessig, L.; Lam, C.S.P.; et al. Accelerometer vs. Other Activity Measures in Heart Failure with Preserved Ejection Fraction: The VITALITY-HFpEF Trial. ESC Heart Fail. 2024, 11, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, A.; Anifanti, M.; Koukouvou, G.; Ntovoli, A.; Alexandris, K.; Kouidi, E. Exploring the Effects of Real-Time Online Cardiac Telerehabilitation Using Wearable Devices Compared to Gym-Based Cardiac Exercise in People with a Recent Myocardial Infarction: A Randomised Controlled Trial. Front. Cardiovasc. Med. 2024, 11, 1410616. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Adherence to Long-Term Therapies: Evidence for Action; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and Impact on Cardiovascular Risk Factor Control in Coronary Patients across 27 Countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V Registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Chen, S.; Hong, L.; Sun, K.; Gong, E.; Li, C.; Yan, L.L.; Schwalm, J.-D. Effect of Mobile Health Interventions on the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-Analysis. Can. J. Cardiol. 2017, 33, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Franssen, W.M.A.; Franssen, G.H.L.M.; Spaas, J.; Solmi, F.; Eijnde, B.O. Can Consumer Wearable Activity Tracker-Based Interventions Improve Physical Activity and Cardiometabolic Health in Patients with Chronic Diseases? A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Kaihara, T.; Intan-Goey, V.; Scherrenberg, M.; Falter, M.; Frederix, I.; Dendale, P. Impact of Activity Trackers on Secondary Prevention in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2022, 29, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Kitahara, S.; Funabashi, S.; Makino, H.; Matsubara, M.; Matsuo, M.; Omura-Ohata, Y.; Koezuka, R.; Tochiya, M.; Tamanaha, T.; et al. The Effect of Continuous Glucose Monitoring-Guided Glycemic Control on Progression of Coronary Atherosclerosis in Type 2 Diabetic Patients with Coronary Artery Disease: The OPTIMAL Randomized Clinical Trial. J. Diabetes Complicat. 2023, 37, 108592. [Google Scholar] [CrossRef] [PubMed]
- Rigo, B.; Bateman, A.; Lee, J.; Kim, H.; Lee, Y.; Romero, L.; Jang, Y.C.; Herbert, R.; Yeo, W.-H. Soft Implantable Printed Bioelectronic System for Wireless Continuous Monitoring of Restenosis. Biosens. Bioelectron. 2023, 241, 115650. [Google Scholar] [CrossRef] [PubMed]
- Alghrairi, M.; Sulaiman, N.; Mutashar, S. Health Care Monitoring and Treatment for Coronary Artery Diseases: Challenges and Issues. Sensors 2020, 20, 4303. [Google Scholar] [CrossRef] [PubMed]
- Heywood, J.T.; Jermyn, R.; Shavelle, D.; Abraham, W.T.; Bhimaraj, A.; Bhatt, K.; Sheikh, F.; Eichorn, E.; Lamba, S.; Bharmi, R.; et al. Impact of Practice-Based Management of Pulmonary Artery Pressures in 2000 Patients Implanted with the CardioMEMS Sensor. Circulation 2017, 135, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Nyein, H.Y.Y.; Tai, L.-C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; et al. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sens. 2018, 3, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Assadsangabi, B.; Brox, D.; Hsiang, Y.; Takahata, K. A Pressure-Sensing Smart Stent Compatible with Angioplasty Procedure and Its in Vivo Testing. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; IEEE: Las Vegas, NV, USA, 2017; pp. 133–136. [Google Scholar] [CrossRef]
- Iqbal, M.; Sultan, S.; Qasaimeh, M.A. Novel Capacitive MEMS Sensor for Monitoring In-Stent Restenosis. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 368–371. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.L.; Fonarow, G.C. Home Monitoring for Heart Failure Management. J. Am. Coll. Cardiol. 2012, 59, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Treskes, R.W.; van Winden, L.A.M.; van Keulen, N.; van der Velde, E.T.; Beeres, S.L.M.A.; Atsma, D.E.; Schalij, M.J. Effect of Smartphone-Enabled Health Monitoring Devices vs Regular Follow-up on Blood Pressure Control Among Patients After Myocardial Infarction: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e202165. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Simon, T.; Collet, J.-P.; Anderson, J.L.; Antman, E.M.; Bliden, K.; Cannon, C.P.; Danchin, N.; Giusti, B.; Gurbel, P.; et al. Reduced-Function CYP2C19 Genotype and Risk of Adverse Clinical Outcomes among Patients Treated with Clopidogrel Predominantly for PCI: A Meta-Analysis. JAMA 2010, 304, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, H.; Li, Y.; Zhu, S.; Hu, H.; Gu, Z. Nanotechnology in Coronary Heart Disease. Acta Biomater. 2023, 171, 37–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Song, C.; Hong, Y.S.; Kim, M.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Wearable/Disposable Sweat-Based Glucose Monitoring Device with Multistage Transdermal Drug Delivery Module. Sci. Adv. 2017, 3, e1601314. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Margolis, S.; Cho, J.M.; Wang, S.; Arianpour, B.; Jabalera, A.; Yin, J.; Hong, W.; Zhang, Y.; Zhao, P.; et al. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. Adv. Sci. 2024, 11, 2400596. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Jia, W.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study. Anal. Chem. 2015, 87, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-End Design of Wearable Sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xu, T.; Zhang, X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines 2020, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, S.; Margolis, S.; Cho, J.M.; Zhu, E.; Dupuy, A.; Yin, J.; Park, S.-K.; Magyar, C.E.; Adeyiga, O.B.; et al. Rapid Prediction of Acute Thrombosis via Nanoengineered Immunosensors with Unsupervised Clustering for Multiple Circulating Biomarkers. Sci. Adv. 2024, 10, eadq6778. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J.H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Fortunato, G.; Radacsi, N. Wearable Flexible Sweat Sensors for Healthcare Monitoring: A Review. J. R. Soc. Interface 2019, 16, 20190217. [Google Scholar] [CrossRef] [PubMed]
- Hossaini Nasr, S.; Rashidijahanabad, Z.; Ramadan, S.; Kauffman, N.; Parameswaran, N.; Zinn, K.R.; Qian, C.; Arora, R.; Agnew, D.; Huang, X. Effective Atherosclerotic Plaque Inflammation Inhibition with Targeted Drug Delivery by Hyaluronan Conjugated Atorvastatin Nanoparticles. Nanoscale 2020, 12, 9541–9556. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Behera, M.; Mahapatra, C.; Sundaresan, N.R.; Chatterjee, K. Nanostructured Polymer Scaffold Decorated with Cerium Oxide Nanoparticles toward Engineering an Antioxidant and Anti-Hypertrophic Cardiac Patch. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111416. [Google Scholar] [CrossRef] [PubMed]
- Boarescu, P.-M.; Boarescu, I.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bulboacă, A.E.; Nicula, C.; Râjnoveanu, R.-M.; Bolboacă, S.D. Curcumin Nanoparticles Protect against Isoproterenol Induced Myocardial Infarction by Alleviating Myocardial Tissue Oxidative Stress, Electrocardiogram, and Biological Changes. Molecules 2019, 24, 2802. [Google Scholar] [CrossRef] [PubMed]
- Viswambari Devi, R.; Doble, M.; Verma, R.S. Nanomaterials for Early Detection of Cancer Biomarker with Special Emphasis on Gold Nanoparticles in Immunoassays/Sensors. Biosens. Bioelectron. 2015, 68, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tan, B.; Wang, X.; Qiu, S.; Zhang, Q.; Wang, S.; Yen, Y.-T.; Jing, N.; Liu, C.; Chen, X.; et al. Machine Learning-Assisted Point-of-Care Diagnostics for Cardiovascular Healthcare. Bioeng. Transl. Med. 2025, 10, e70002. [Google Scholar] [CrossRef]
- Lin, A.; Manral, N.; McElhinney, P.; Killekar, A.; Matsumoto, H.; Kwiecinski, J.; Pieszko, K.; Razipour, A.; Grodecki, K.; Park, C.; et al. Deep Learning-Enabled Coronary CT Angiography for Plaque and Stenosis Quantification and Cardiac Risk Prediction: An International Multicentre Study. Lancet Digit. Health 2022, 4, e256–e265. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.; Zheng, Y.; Cho, Y.; Jiang, Y. AI Applications for Chronic Condition Self-Management: Scoping Review. J. Med. Internet Res. 2025, 27, e59632. [Google Scholar] [CrossRef] [PubMed]
- Badidi, E. Edge AI for Early Detection of Chronic Diseases and the Spread of Infectious Diseases: Opportunities, Challenges, and Future Directions. Future Internet 2023, 15, 370. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Jo, Y.-Y.; Lee, S.Y.; Kang, S.; Lim, S.-Y.; Lee, M.S.; Kim, K.-H. Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG. Diagnostics 2022, 12, 654. [Google Scholar] [CrossRef] [PubMed]
- Mariani, A.; Spaccarotella, C.A.M.; Rea, F.S.; Franzone, A.; Piccolo, R.; Castiello, D.S.; Indolfi, C.; Esposito, G. Artificial Intelligence and Its Role in the Diagnosis and Prediction of Adverse Events in Acute Coronary Syndrome: A Narrative Review of the Literature. Life 2025, 15, 515. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, M.; Borghese, A.; Marrazzo, V.R.; Maresca, L.; Breglio, G.; Irace, A.; Riccio, M. Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device. Sensors 2024, 24, 828. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-D.; Wang, J.; Ramsey, E.; Leavey, G.; Chico, T.J.A.; Condell, J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. Sensors 2022, 22, 8002. [Google Scholar] [CrossRef] [PubMed]
- Sopic, D.; Aminifar, A.; Aminifar, A.; Atienza, D. Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.A.; Olesen, K.K.W.; Koul, S.; Gale, C.P.; Rylance, R.; Jernberg, T.; Baron, T.; Spaak, J.; James, S.; Lindahl, B.; et al. Development and Validation of an Artificial Neural Network Algorithm to Predict Mortality and Admission to Hospital for Heart Failure after Myocardial Infarction: A Nationwide Population-Based Study. Lancet Digit. Health 2022, 4, e37–e45. [Google Scholar] [CrossRef] [PubMed]
- Marzoog, B.A.; Chomakhidze, P.; Gognieva, D.; Gagarina, N.V.; Silantyev, A.; Suvorov, A.; Fominykha, E.; Mustafina, M.; Natalya, E.; Gadzhiakhmedova, A.; et al. Machine Learning Model Discriminate Ischemic Heart Disease Using Breathome Analysis. Biomedicines 2024, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Celli, A.; Ruiu, A.; Saponara, S.; Fanucci, L. A Telemedicine Service System Exploiting BT/BLE Wireless Sensors for Remote Management of Chronic Patients. Technologies 2019, 7, 13. [Google Scholar] [CrossRef]
- Manavi, T.; Zafar, H.; Sharif, F. An Era of Digital Healthcare-A Comprehensive Review of Sensor Technologies and Telehealth Advancements in Chronic Heart Failure Management. Sensors 2024, 24, 2546. [Google Scholar] [CrossRef] [PubMed]
- Catcronic Salut SL. Usefulness of a Telemonitoring System to Optimize Continuity of Care from Cardiology to Primary Care in Patients with Chronic Coronary Syndrome; Clinical Trial Registration NCT05875311; 2024. Available online: https://clinicaltrials.gov/study/NCT05875311 (accessed on 14 July 2025).
- Papini, G.B.; Fonseca, P.; Aubert, X.L.; Overeem, S.; Bergmans, J.W.M.; Vullings, R. Photoplethysmography Beat Detection and Pulse Morphology Quality Assessment for Signal Reliability Estimation. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Public of Korea, 11–15 July 2017; Volume 2017, pp. 117–120. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Al-Halawani, R.; Charlton, P.H.; Qassem, M.; Kyriacou, P.A. A Review of the Effect of Skin Pigmentation on Pulse Oximeter Accuracy. Physiol. Meas. 2023, 44, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Colvonen, P.J. Response To: Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. npj Digit. Med. 2021, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Zimetbaum, P.; Goldman, A. Ambulatory Arrhythmia Monitoring. Circulation 2010, 122, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, M.; Oakden-Rayner, L.; Beam, A.L. The False Hope of Current Approaches to Explainable Artificial Intelligence in Health Care. Lancet Digit. Health 2021, 3, e745–e750. [Google Scholar] [CrossRef] [PubMed]
- Mihan, A.; Pandey, A.; Van Spall, H.G.C. Artificial Intelligence Bias in the Prediction and Detection of Cardiovascular Disease. npj Cardiovasc. Health 2024, 1, 31. [Google Scholar] [CrossRef]
- Naseri Jahfari, A.; Tax, D.; Reinders, M.; van der Bilt, I. Machine Learning for Cardiovascular Outcomes from Wearable Data: Systematic Review from a Technology Readiness Level Point of View. JMIR Med. Inform. 2022, 10, e29434. [Google Scholar] [CrossRef] [PubMed]
- Whitelaw, S.; Mamas, M.A.; Topol, E.; Spall, H.G.C.V. Applications of Digital Technology in COVID-19 Pandemic Planning and Response. Lancet Digit. Health 2020, 2, e435–e440. [Google Scholar] [CrossRef] [PubMed]
- Qoseem, I.O.; Okesanya, O.J.; Olaleke, N.O.; Ukoaka, B.M.; Amisu, B.O.; Ogaya, J.B.; Lucero-Prisno, D.E., III. Digital Health and Health Equity: How Digital Health Can Address Healthcare Disparities and Improve Access to Quality Care in Africa. Health Promot. Perspect. 2024, 14, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gurova, O.; Merritt, T.R.; Papachristos, E.; Vaajakari, J. Sustainable Solutions for Wearable Technologies: Mapping the Product Development Life Cycle. Sustainability 2020, 12, 8444. [Google Scholar] [CrossRef]
- Mathur, P.; Srivastava, S.; Xu, X.; Mehta, J.L. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clin. Med. Insights Cardiol. 2020, 14, 1179546820927404. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Rogers, A.J.; Johnson, K.W.; Wang, Z.; Turakhia, M.P.; Halperin, J.L.; Narayan, S.M. Integration of Novel Monitoring Devices with Machine Learning Technology for Scalable Cardiovascular Management. Nat. Rev. Cardiol. 2021, 18, 75–91. [Google Scholar] [CrossRef] [PubMed]
Management Phase | Clinical Objective | Types of Sensors Involved | Main Benefits | Current Limitations |
---|---|---|---|---|
Early Diagnosis and Risk Stratification | Detect silent ischemia, arrhythmias, and subclinical abnormalities | ECG patch, loop recorder, troponin sensors, PPG, consumer wearables | Early diagnosis, continuous monitoring, detection of silent ischemia, and dynamic risk stratification | Possible false positives/negatives, data heterogeneity, and low standardized clinical adoption |
Disease Progression Monitoring | Assess therapy adherence, control risk factors, and detect signs of progression | Activity trackers, CGM, BP sensors, smart stents, multiparametric wearables | Increased patient engagement, early detection of restenosis, promotion of a healthy lifestyle, and continuous surveillance | Low effectiveness on harmful behaviors, response variability, and difficulty in data standardization |
Therapeutic Response Evaluation | Monitor the effectiveness of pharmacological and interventional therapies | Wearable ECG, hemodynamic sensors, biochemical biosensors | Real-time feedback, therapy adjustment, detection of subclinical events, and prevention of hospitalizations | High costs, limited access in low-income settings, need for broader clinical validation |
Personalized Therapies and Remote Management | Tailor treatments to individual characteristics and enable remote monitoring | AI + wearable/implantable sensors, mHealth, biosensors integrated with pharmacogenomics | Data-driven therapeutic decisions, patient involvement, home-based management, and reduced hospital burden | Lack of CCS-specific devices, need for randomized studies, privacy and security issues |
Telemedicine and Territorial Accessibility | Overcome geographic barriers and ensure continuous follow-up | Multi-lead smartwatch, remote ECG, cloud platforms with patient dashboards | Reduced inequalities, monitoring in rural areas, early triage, improved care access, and efficient use of healthcare resources | Limited integration into clinical practice, lack of interoperable systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cricco, R.; Segreti, A.; Ferro, A.; Beato, S.; Castaldo, G.; Ciancio, M.; Sacco, F.M.; Pennazza, G.; Ussia, G.P.; Grigioni, F. Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome. Sensors 2025, 25, 4585. https://doi.org/10.3390/s25154585
Cricco R, Segreti A, Ferro A, Beato S, Castaldo G, Ciancio M, Sacco FM, Pennazza G, Ussia GP, Grigioni F. Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome. Sensors. 2025; 25(15):4585. https://doi.org/10.3390/s25154585
Chicago/Turabian StyleCricco, Riccardo, Andrea Segreti, Aurora Ferro, Stefano Beato, Gaetano Castaldo, Martina Ciancio, Filippo Maria Sacco, Giorgio Pennazza, Gian Paolo Ussia, and Francesco Grigioni. 2025. "Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome" Sensors 25, no. 15: 4585. https://doi.org/10.3390/s25154585
APA StyleCricco, R., Segreti, A., Ferro, A., Beato, S., Castaldo, G., Ciancio, M., Sacco, F. M., Pennazza, G., Ussia, G. P., & Grigioni, F. (2025). Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome. Sensors, 25(15), 4585. https://doi.org/10.3390/s25154585