Research Progress on Aptamer Electrochemical Biosensors Based on Signal Amplification Strategy
Abstract
1. Introduction
2. Nucleic Acid-Based Signal Sensing and Amplification Strategies
2.1. Carbon Nanomaterials
2.2. Gold Nanomaterials
2.3. Quantum Dots
2.4. Enzymes
2.5. Nucleic Acids
2.6. Combined Application of Several Materials
3. Current Challenges and Future Prospects
4. Conclusions
Funding
Conflicts of Interest
References
- Zhang, Y.; Li, H.; Guo, Z.; Wang, X.; Zhou, N. Immobilization-free electrochemical homogeneous aptasensor for highly sensitive detection of carcinoembryonic antigen by dual amplification strategy. Anal. Chim. Acta 2023, 1274, 341586. [Google Scholar] [CrossRef]
- Du, S.; Pei, X.; Huang, Y.; Wang, Y.; Li, Z.; Niu, X.; Zhang, W.; Sun, W. Hemin/G-quadruplex and AuNPs-MoS2 based novel dual signal amplification strategy for ultrasensitively sandwich-type electrochemical thrombin aptasensor. Bioelectrochemistry 2024, 157, 108635. [Google Scholar] [CrossRef]
- Wu, F.; Guo, H.; Wang, B.; Kang, K.; Wang, L.; Wang, Y.; Ji, X. Dual signal amplification strategy-based electrochemical aptasensor utilizing redox molecule/MOF composites for multi-pesticide detection. Sens. Actuators B Chem. 2025, 423, 136757. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; He, B.; Xie, L.; Cao, X.; Jin, H.; Wei, M.; Ren, W.; Suo, Z.; Xu, Y. Ultrasensitive label-free electrochemical aptasensor for Pb2+ detection exploiting Exo III amplification and AgPt/GO nanocomposite-enhanced transduction. Talanta 2024, 276, 126260. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Lu, Y.; Xiong, X.; Li, Y.; Liu, Y.; Xiong, X. Chronocoulometric aptamer based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode. Microchim. Acta 2019, 186, 109. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X. An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I. Microchim. Acta 2025, 192, 25. [Google Scholar] [CrossRef]
- Wang, M.; He, B.; Xie, L.; Cao, X.; Ren, W.; Suo, Z.; Xu, Y.; Wei, M.; Jin, H. MOF-derived Mn, N Co-doped Co-C nanomaterials and exo I-driven dual signal amplification for sensitive detection of florfenicol using an electrochemical aptasensor. Chem. Eng. J. 2024, 501, 157782. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- He, L.; Huang, R.; Xiao, P.; Liu, Y.; Jin, L.; Liu, H.; Li, S.; Deng, Y.; Chen, Z.; Li, Z.; et al. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chin. Chem. Lett. 2021, 32, 1593–1602. [Google Scholar] [CrossRef]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef]
- Reano, R.L.; Escobar, E.C. A review of antibody, aptamer, and nanomaterials synergistic systems for an amplified electrochemical signal. Front. Bioeng. Biotechnol. 2024, 12, 1361469. [Google Scholar] [CrossRef]
- Tang, S.; He, B.; Yang, J.; Liu, Y.; Liang, Y.; Wang, J.; Jin, H.; Wei, M.; Ren, W.; Suo, Z.; et al. A signal-amplification electrochemical aptasensor based on porous Pt nanotubes and tetrahedral DNA nanostructures for ultrasensitive detection of citrinin. Sens. Actuators B Chem. 2024, 408, 135519. [Google Scholar] [CrossRef]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Xie, P.; Yang, Z.-H.; Yuan, R.; Zhang, K. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy. Biosens. Bioelectron. 2018, 102, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jia, X.; Yang, S.; Cao, M.; He, B.; Ren, W.; Suo, Z. An aptasensor with colorimetric and electrochemical dual-outputs for malathion detection utilizing peroxidase-like activity of Fe-MOF. Food Chem.-X 2024, 24, 101835. [Google Scholar]
- Chen, P.; Qiao, X.; Liu, J.; Xia, F.; Tian, D.; Zhou, C. Dual-Signaling Amplification Electrochemical Aptasensor Based on Hollow Polymeric Nanospheres for Acetamiprid Detection. ACS Appl. Mater. Interfaces 2019, 11, 14560–14566. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakaniz, M.; Hosseinzadeh, L. A Sensitive Electrochemical Aptasensor for TNF-α Based on Bimetallic Ag@Pt Core-Shell Nanoparticle Functionalized Graphene Nanostructures as Labels for Signal Amplification. J. Electrochem. Soc. 2016, 163, B119–B124. [Google Scholar] [CrossRef]
- Tao, D.; Xie, C.; Fu, S.; Rong, S.; Song, S.; Ye, H.; Jaffrezic-Renault, N.; Guo, Z. Thionine-functionalized three-dimensional carbon nanomaterial- based aptasensor for analysis of A oligomers in serum. Anal. Chim. Acta 2021, 1183, 338990. [Google Scholar] [CrossRef]
- Chi, H.; Liu, G. Carbon nanomaterial-based molecularly imprinted polymer sensors for detection of hazardous substances in food: Recent progress and future trends. Food Chem. 2023, 420, 136100. [Google Scholar] [CrossRef]
- Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 2015, 44, 4433–4453. [Google Scholar] [CrossRef] [PubMed]
- Raya, I.; Kzar, H.H.; Mahmoud, Z.H.; Al Ayub Ahmed, A.; Ibatova, A.Z.; Kianfar, E. A review of gas sensors based on carbon nanomaterial. Carbon Lett. 2022, 32, 339–364. [Google Scholar] [CrossRef]
- Cui, X.; Tan, Z.; Nian, H.; Xiong, T.; Huseien, G.F.; Dafalla, A.M.; Liu, P.; Kang, Z.; Ayoub, G.; Elfaki, E.A.; et al. Performance enhancement of form stable phase change materials: A review of carbon nanomaterial-based strategies. Fuller. Nanotub. Carbon Nanostructures 2024, 32, 1017–1032. [Google Scholar] [CrossRef]
- Liu, H.; Xu, S.; He, Z.; Deng, A.; Zhu, J.-J. Supersandwich Cytosensor for Selective and Ultrasensitive Detection of Cancer Cells Using Aptamer-DNA Concatamer-Quantum Dots Probes. Anal. Chem. 2013, 85, 3385–3392. [Google Scholar] [CrossRef]
- Vasilescu, A.; Hayat, A.; Gaspar, S.; Marty, J.-L. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. Electroanalysis 2018, 30, 2–19. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, Y.; Hu, M.; Zhang, J.; Yang, Y.; Liu, H.; Guo, L.; Li, L. Electrochemical aptasensor with signal amplification strategy of covalent organic framework-derived carbon material for ultrasensitive determination of carbendazim. Microchem. J. 2024, 200, 110450. [Google Scholar] [CrossRef]
- Zhu, X.; Kou, F.; Xu, H.; Han, Y.; Yang, G.; Huang, X.; Chen, W.; Chi, Y.; Lin, Z. Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sens. Actuators B Chem. 2018, 270, 263–269. [Google Scholar] [CrossRef]
- Gong, Z.; Zhao, H.; Mao, Y.; Zhou, F.; Shi, Z.; Lan, M. An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat. Bioelectrochemistry 2025, 163, 108906. [Google Scholar] [CrossRef] [PubMed]
- Muniandy, S.; Teh, S.J.; Appaturi, J.N.; Thong, K.L.; Lai, C.W.; Ibrahim, F.; Leo, B.F. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry 2019, 127, 136–144. [Google Scholar] [CrossRef]
- Pan, D.; Lin, Y.; Liu, X.; Xin, Y.; Tian, Q.; Zhang, J. Ultrasensitive and preprocessing-free electrochemical biosensing platform for the detection of cancer-derived exosomes based on spiky-shaped aptamer-magnetic beads. Biosens. Bioelectron. 2022, 217, 114705. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Khajehsharifi, H.; Hajihosseini, S. Detection of Oxytetracycline Using an Electrochemical Label-Free Aptamer-Based Biosensor. Biosensors 2022, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jia, H.; Li, N.; Xu, D.; Li, Z. Electrochemical detection of chlorpyrifos in fruits with gold-histidine functionalized graphene quantum dot-graphene hybrid and target-induced DNA cycle amplification. Sens. Actuators B Chem. 2022, 355, 131314. [Google Scholar]
- Qaanei, M.; Taheri, R.A.; Eskandari, K. Electrochemical aptasensor for Escherichia coli O157:H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol. Anal. Methods 2021, 13, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.V.; Trinh, T.T.T.; Hoang, V.T.; Dao, T.D.; Tuong, H.T.; Kim, H.S.; Park, H.; Yeo, S.-J. Peptide Aptamer of Complementarity-Determining Region to Detect Avian Influenza Virus. J. Biomed. Nanotechnol. 2019, 15, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Yuan, X.; Zhang, P.; Chai, Y.-q.; Yuan, R. Versatile and Ultrasensitive Electrochemiluminescence Biosensor for Biomarker Detection Based on Nonenzymatic Amplification and Aptamer-Triggered Emitter Release. Anal. Chem. 2019, 91, 3452–3458. [Google Scholar] [CrossRef]
- Jiao, X.X.; Chen, J.R.; Zhang, X.Y.; Luo, H.Q.; Li, N.B. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin. Anal. Biochem. 2013, 441, 95–100. [Google Scholar] [CrossRef]
- Li, F.; Wang, X.; Sun, X.; Guo, Y.; Zhao, W. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal. Chim. Acta 2018, 1033, 185–192. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Y.; Deng, C.; Xiang, J.; Li, Y. A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta 2015, 132, 150–154. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, X.; Xu, X. An electrochemical aptasensor for detection of streptomycin based on signal amplification assisted by functionalized gold nanoparticles and hybridization chain reaction. Microchim. Acta 2023, 190, 152. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, F.; Liu, Q.; Wang, C.; Zhu, G.; Bai, L.; Shi, S.; Zhao, Y.; Jiang, Z.; Zhang, W. A novel and sensitive dual signaling ratiometric electrochemical aptasensor based on nanoporous gold for determination of Ochratoxin A. Food Chem. 2024, 432, 137192. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, G.; Liu, S.; Yu, A. Ultrasensitive electrochemical aptasensing of kanamycin antibiotic by enzymatic signal amplification with a horseradish peroxidase-functionalized gold nanoprobe. Sens. Actuators B Chem. 2018, 273, 1762–1767. [Google Scholar] [CrossRef]
- Ge, C.; Yuan, R.; Yi, L.; Yang, J.; Zhang, H.; Li, L.; Nian, W.; Yi, G. Target-induced aptamer displacement on gold nanoparticles and rolling circle amplification for ultrasensitive live Salmonella typhimurium electrochemical biosensing. J. Electroanal. Chem. 2018, 826, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Shen, Y.; Li, Z.; Yan, Y.; Yang, J. Electrochemical sensing of fipronil in fruit and vegetable based on gold nanocrystal and target-induced DNA cycle signal amplification. Sens. Actuators B Chem. 2024, 406, 135420. [Google Scholar] [CrossRef]
- Yu, T.; Suo, Z.; Zhang, X.; Shen, H.; Wei, M.; Jin, H.; He, B.; Ren, W.; Xu, Y. Highly conductive AuNPs/Co-MOF nanocomposites synergistic hybridization chain reaction enzyme-free electrochemical aptasensor for ultrasensitive detection of Aflatoxin B1. Chem. Eng. J. 2024, 495, 153596. [Google Scholar] [CrossRef]
- Wang, P.; Xie, Y.; Guan, Z.; Ma, H.; Xi, S. A Simple Ratiometric Electrochemical Aptasensor Based on Exonuclease III-Assisted Target Recycling for Ultrasensitive Detection of Prostate Specific Antigen. J. Chem. 2023, 2023, 8897036. [Google Scholar] [CrossRef]
- Huang, K.-J.; Liu, Y.-J.; Zhang, J.-Z. Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification. Microchim. Acta 2015, 182, 409–417. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Shi, Y.; Hu, B.; Zheng, Q.; Piao, Y.; Feng, L.; Cao, J. Electrochemical/photoelectrochemical dual-mode aptasensor for sensitive aflatoxin B1 assay based on distance-modulation strategy using Au NPs/ PC ZIF-8-ZnO as sensing substrate. Food Chem. 2024, 441, 138382. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens. Bioelectron. 2016, 86, 315–320. [Google Scholar] [CrossRef]
- Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 6826–6833. [Google Scholar] [CrossRef]
- Wen, L.; Qiu, L.; Wu, Y.; Hu, X.; Zhang, X. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications. Sensors 2017, 17, 1736. [Google Scholar] [CrossRef]
- Lisdat, F.; Schaefer, D.; Kapp, A. Quantum dots on electrodes-new tools for bioelectroanalysis. Anal. Bioanal. Chem. 2013, 405, 3739–3752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, C.; Zhu, Y.; Wang, Q.; Geng, L. Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites. Electrochim. Acta 2021, 393, 139054. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Wang, C.; Tian, Y.; Zhou, N. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots. Anal. Methods 2016, 8, 1981–1988. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhang, H.; Yan, Z.; Li, T.; Chen, Y.; Xu, Q.; Jiang, Q. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim. Acta 2016, 183, 1099–1106. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, L.; Sun, Y.; Zheng, F.; Ke, W. Ag/CdO NP-Engineered Magnetic Electrochemical Aptasensor for Prostatic Specific Antigen Detection. ACS Appl. Mater. Interfaces 2019, 11, 3474–3481. [Google Scholar] [CrossRef]
- Lin, X.; Liu, C.; Lei, Q.; Nan, X.; Zhu, Y.; Liao, J.; Du, Z.; Ye, C.; Xiong, Y.; Yang, M.; et al. A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus. J. Hazard. Mater. 2025, 485, 136845. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, B.; Qian, K.; Qiao, L.; Liu, Y.; Liu, B. Sensitive electrochemical aptasensor for detecting EpCAM with silica nanoparticles and quantum dots for signal amplification. J. Electroanal. Chem. 2020, 856, 113655. [Google Scholar] [CrossRef]
- Li, F.; Wu, Y.; Chen, D.; Guo, Y.; Wang, X.; Sun, X. Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk. Int. J. Hydrog. Energy 2021, 46, 23301–23309. [Google Scholar] [CrossRef]
- Huang, S.; Gan, N.; Li, T.; Zhou, Y.; Cao, Y.; Dong, Y. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta 2018, 179, 28–36. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, H.; Guo, Q.; Zhang, Y.; Gao, X.; Yang, Q.; Sun, X.; Guo, Y.; Zhang, Y. A dual-modal electrochemical aptasensor based on intelligent DNA Walker with cascade signal amplification powered by Nb.BbvCI for Pb2+. Sci. Total Environ. 2023, 863, 160910. [Google Scholar] [CrossRef]
- Jia, X.; Xu, Y.; Suo, Z.; Ren, W.; Zhao, R.; He, B. An electrochemical aptasensor based on MOF derivatives and RecJf exonuclease assisted cyclic reaction for sensitive detection of AFB1. Sens. Actuators B Chem. 2025, 426, 137118. [Google Scholar]
- Liu, X.; Zhang, Y.; Wang, Y.; Xu, H.; Lu, X.; Ma, X.; Zhang, W. Exonuclease III assisted electrochemical aptasensor simultaneous detection of aflatoxin B1 and ochratoxin a in grains. LWT-Food Sci. Technol. 2024, 201, 116211. [Google Scholar] [CrossRef]
- Zheng, J.; Peng, X.; Wang, Y.; Bao, T.; Wen, W.; Zhang, X.; Wang, S. An exonuclease-assisted triple-amplified electrochemical aptasensor for mucin 1 detection based on strand displacement reaction and enzyme catalytic strategy. Anal. Chim. Acta 2019, 1086, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Qing, M.; Sun, Z.; Wang, L.; Du, S.Z.; Zhou, J.; Tang, Q.; Luo, H.Q.; Li, N.B. CRISPR/Cas12a-regulated homogeneous electrochemical aptasensor for amplified detection of protein. Sens. Actuators B Chem. 2021, 348, 130713. [Google Scholar] [CrossRef]
- Zhang, J.; Ran, F.; Zhou, W.; Shang, B.; Yu, F.; Wu, L.; Hu, W.; He, X.; Chen, Q. Ultrasensitive fluorescent aptasensor for MUC1 detection based on deoxyribonuclease I-aided target recycling signal amplification. RSC Adv. 2018, 8, 32009–32015. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, S.; Zhong, W.; Wu, J.; Shen, Z.; Chen, Z.; Li, G. Highly Sensitive Electrochemical Aptasensor Based on a Ligase-Assisted Exonuclease III-Catalyzed Degradation Reaction. ACS Appl. Mater. Interfaces 2014, 6, 7070–7075. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, Y.; Zhang, H.; Cai, C. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Anal. Chim. Acta 2020, 1130, 1–9. [Google Scholar] [CrossRef]
- Jiao, Y.; Fu, J.; Hou, W.; Shi, Z.; Guo, Y.; Sun, X.; Yang, Q.; Li, F. Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues. New J. Chem. 2018, 42, 14642–14647. [Google Scholar] [CrossRef]
- Xiong, P.; Gan, N.; Cao, Y.; Hu, F.; Li, T.; Zheng, L. An Ultrasensitive Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex-Antibody Copolymer as a Sensitive Label. Materials 2012, 5, 2757–2772. [Google Scholar] [CrossRef]
- Fan, K.; Zhu, J.; Wu, X.; Zhang, X.; Wang, S.; Wen, W. A flexible label-free electrochemical aptasensor based on target-induced conjunction of two split aptamers and enzyme amplification. Sens. Actuators B Chem. 2022, 363, 131766. [Google Scholar] [CrossRef]
- Li, G.; Guo, F.; Liang, J.; Wan, B.; Liang, J.; Zhou, Z. Sandwich-type supersensitive electrochemical aptasensor of glypican-3 based on PrGO-Hemin-PdNP and AuNP@PoPD. Microchim. Acta 2024, 191, 340. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Cao, L.; Wang, C.; Liang, J.; Zhou, Z.; Li, G. An Ultrasensitive Glypican-3 Electrochemical Aptasensor Based on Reduced Graphene Oxide-Carboxymethylchitosan-Hemin/Palladium Nanoparticles. J. Electrochem. Soc. 2022, 169, 087517. [Google Scholar] [CrossRef]
- Feng, B.-B.; Suo, Z.-G.; Wei, M.; Liu, Y.; Jin, H.-L. A novel electrochemical aptasensor based on rolling circle amplification-driven Ag plus -DNAzyme amplification for ochratoxin A detection. Chin. J. Anal. Chem. 2023, 51, 100217. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Wang, X.; Zhu, Z.; Zhang, Q.; Liu, S.; Wang, Y.; Huang, J. Ultrasensitive electrochemical aptasensor based on palindromic sequence mediated bidirectional SDA and a DNAzyme walker for kanamycin detection. New J. Chem. 2022, 46, 10394–10401. [Google Scholar] [CrossRef]
- Niu, C.; Lin, X.; Jiang, X.; Guo, F.; Liu, J.; Liu, X.; Huang, H.; Huang, Y. An electrochemical aptasensor for highly sensitive detection of CEA based on exonuclease III and hybrid chain reaction dual signal amplification. Bioelectrochemistry 2022, 143, 107986. [Google Scholar] [CrossRef] [PubMed]
- Qing, T.; He, D.; He, X.; Wang, K.; Xu, F.; Wen, L.; Shangguan, J.; Mao, Z.; Lei, Y. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: Status and challenges. Anal. Bioanal. Chem. 2016, 408, 2793–2811. [Google Scholar] [CrossRef]
- Huang, R.; He, L.; Xia, Y.; Xu, H.; Liu, C.; Xie, H.; Wang, S.; Peng, L.; Liu, Y.; Liu, Y.; et al. A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-Assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes. Small 2019, 15, 1900735. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Huang, Y.; Zhang, X.; Dong, J.; Sun, D. An ultrasensitive electrochemical aptasensor based on zeolitic imidazolate framework-67 loading gold nanoparticles and horseradish peroxidase for detection of aflatoxin B1. Food Chem. 2024, 456, 140039. [Google Scholar] [CrossRef]
- Li, C.; Yu, Z.; Wan, H.; Wang, Y.; Gao, C.; Guo, Q.; Cao, X.; Xia, J.; Wang, Z. A target-responsive electrochemical aptasensor with enhanced sensitivity and robustness by a dual-channel cascade sensing course. Microchem. J. 2025, 208, 112553. [Google Scholar] [CrossRef]
- Jia, L.-P.; Feng, Z.; Zhao, R.-N.; Ma, R.-N.; Zhang, W.; Shang, L.; Jia, W.-L.; Wang, H.-S. Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2′-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction. Analyst 2020, 145, 3605–3611. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Xie, Q.; Chu, Z.; Zhang, F.; Wang, Q. An electrochemical aptasensor for exosomes based on strand displacement amplification and hybridization chain reaction amplification. Sens. Actuators B Chem. 2023, 393, 134273. [Google Scholar] [CrossRef]
- Zeng, R.; Su, L.; Luo, Z.; Zhang, L.; Lu, M.; Tang, D. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Anal. Chim. Acta 2018, 1038, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, L.; Liu, H.; Wang, L.; Yu, C.; Li, H. Effective detection of kanamycin residues by target recycling-based enzyme-free signal dual amplification electrochemical aptasensor. Sens. Actuators B Chem. 2025, 430, 137365. [Google Scholar] [CrossRef]
- Zhu, J.; He, B.; Xie, L.; Cao, X.; Liang, Y.; Wang, J. MOF-based nanocomposites coupled with RecJf exonuclease-assisted target recycling amplification: Dual signal amplification for ultrasensitive detection of vanillin. Sens. Actuators B Chem. 2023, 382, 133542. [Google Scholar] [CrossRef]
- Lv, J.J.; Yang, Z.H.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. A novel aptasensor for thrombin detection based on alkaline phosphatase decorated ZnO/Pt nanoflowers as signal amplifiers. Analyst 2015, 140, 8088–8091. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhang, Y. Research Progress on Aptamer Electrochemical Biosensors Based on Signal Amplification Strategy. Sensors 2025, 25, 4367. https://doi.org/10.3390/s25144367
Yang J, Zhang Y. Research Progress on Aptamer Electrochemical Biosensors Based on Signal Amplification Strategy. Sensors. 2025; 25(14):4367. https://doi.org/10.3390/s25144367
Chicago/Turabian StyleYang, Jiangrong, and Yan Zhang. 2025. "Research Progress on Aptamer Electrochemical Biosensors Based on Signal Amplification Strategy" Sensors 25, no. 14: 4367. https://doi.org/10.3390/s25144367
APA StyleYang, J., & Zhang, Y. (2025). Research Progress on Aptamer Electrochemical Biosensors Based on Signal Amplification Strategy. Sensors, 25(14), 4367. https://doi.org/10.3390/s25144367