Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task
Abstract
Highlights
- Repeated practice of a complex motor skill (golf-putting) led to significant performance improvements in novice individuals, regardless of the transcranial direct current stimulation (tDCS) condition.
- tDCS over the motor and prefrontal cortex did not enhance performance in the learning of a complex motor skill (golf-putting) among novice individuals.
- These findings suggest that motor practice alone can drive learning of complex motor skills in novices, and the role of tDCS may depend on task complexity and individual variability.
- This study contributes to a better understanding of how non-invasive brain stimulation interacts with full-body motor tasks, offering valuable insights for future sports neuroscience research.
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Golf-Putting Task
2.4. tDCS
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
tDCS | Transcranial direct current stimulation |
M1 | Motor cortex |
PFC | Prefrontal cortex |
TMS | Transcranial magnetic stimulation |
aM1 | Anodal M1 |
eb0 | Baseline absolute error |
References
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport 1998, 9, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Bamugaddam, A.; Alasheikh, M.; Alhassan, T.; Alhaidar, S.; Almutairi, A.K.; Alfaleh, M.; Al-Regaiey, K.; Al Zahrani, S.S.; Albaiji, B.A.; et al. Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) enhances motor response inhibition and visual recognition memory. Med. Sci. Monit. Basic Res. 2022, 28, e934180. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, S.; Koeda, M.; Ikeda, Y.; Hama, T.; Funayama, T.; Akiyama, T.; Arakawa, R.; Tateno, A.; Suzuki, H.; Okubo, Y. Effects of anodal transcranial direct current stimulation on implicit motor learning and language-related brain function: An fMRI study. Psychiatry Clin. Neurosci. 2021, 75, 200–207. [Google Scholar] [CrossRef]
- Summers, J.J.; Kang, N.; Cauraugh, J.H. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res. Rev. 2016, 25, 42–54. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ishii, D.; Ishibashi, K.; Kohno, Y. Transcranial direct current stimulation of the dorsolateral prefrontal cortex modulates cognitive function related to motor execution during sequential task: A randomized control study. Front. Hum. Neurosci. 2022, 16, 890963. [Google Scholar] [CrossRef]
- Angius, L.; Mauger, A.R.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S.M. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef]
- Banissy, M.J.; Muggleton, N.G. Transcranial direct current stimulation in sports training: Potential approaches. Front. Hum. Neurosci. 2013, 7, 129. [Google Scholar] [CrossRef]
- Grosprêtre, S.; Grandperrin, Y.; Nicolier, M.; Gimenez, P.; Vidal, C.; Tio, G.; Haffen, E.; Bennabi, D. Effect of transcranial direct current stimulation on the psychomotor, cognitive, and motor performances of power athletes. Sci. Rep. 2021, 11, 9731. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Cohen, L.G. The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J. Physiol. 2008, 586, 65–70. [Google Scholar] [CrossRef]
- Cogiamanian, F.; Marceglia, S.; Ardolino, G.; Barbieri, S.; Priori, A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 2007, 26, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, R.; Okano, A.; Gurgel, J.; Porto, F.; Cunha, F.; Massaferri, R.; Farinatti, P. Motor cortex tDCS does not improve strength performance in healthy subjects. Mot. Rev. De Educ. Física 2015, 21, 185–193. [Google Scholar] [CrossRef]
- Tanaka, S.; Sandrini, M.; Cohen, L.G. Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychol. Rehabil. 2011, 21, 650–675. [Google Scholar] [CrossRef] [PubMed]
- Alix-Fages, C.; García-Ramos, A.; Calderón-Nadal, G.; Colomer-Poveda, D.; Romero-Arenas, S.; Fernández-del-Olmo, M.; Márquez, G. Anodal transcranial direct current stimulation enhances strength training volume but not the force–velocity profile. Eur. J. Appl. Physiol. 2020, 120, 1881–1891. [Google Scholar] [CrossRef]
- Garner, C.T.; Dykstra, R.M.; Hanson, N.J.; Miller, M.G. Transcranial direct current stimulation with the halo sport does not improve performance on a three-minute, high intensity cycling test. Int. J. Exerc. Sci. 2021, 14, 962–970. [Google Scholar] [CrossRef]
- Huang, L.; Deng, Y.; Zheng, X.; Liu, Y. Transcranial direct current stimulation with halo sport enhances repeated sprint cycling and cognitive performance. Front. Physiol. 2019, 10, 118. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Schauenburg, A.; Lang, N.; Liebetanz, D.; Exner, C.; Paulus, W.; Tergau, F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 2003, 15, 619–626. [Google Scholar] [CrossRef]
- Antal, A.; Nitsche, M.A.; Kincses, T.Z.; Kruse, W.; Hoffmann, K.P.; Paulus, W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 2004, 19, 2888–2892. [Google Scholar] [CrossRef]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Krakauer, J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef]
- Krakauer, J.W.; Mazzoni, P. Human sensorimotor learning: Adaptation, skill, and beyond. Curr. Opin. Neurobiol. 2011, 21, 636–644. [Google Scholar] [CrossRef]
- Reis, J.; Robertson, E.; Krakauer, J.W.; Rothwell, J.; Marshall, L.; Gerloff, C.; Cohen, L.G. Consensus: “Can tDCS and TMS enhance motor learning and memory formation?”. Brain Stimul. 2008, 1, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.F.; Yeung, A.Y.; Poolton, J.M.; Lee, T.M.; Leung, G.K.; Masters, R.S. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task. Brain Stimul. 2015, 8, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.J.; Wilson, M.R.; Buckingham, G.; Vine, S.J. No effect of transcranial direct current stimulation of frontal, motor or visual cortex on performance of a self-paced visuomotor skill. Psychol. Sport. Exerc. 2019, 43, 368–373. [Google Scholar] [CrossRef]
- Parma, J.O.; Profeta, V.L.D.S.; Andrade, A.G.P.D.; Lage, G.M.; Apolinário-Souza, T. TDCS of the primary motor cortex: Learning the absolute dimension of a complex motor task. J. Mot. Behav. 2020, 53, 431–444. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Katayama, T.; Kanosue, K. The effect of cerebellar transcranial direct current stimulation on a throwing task depends on individual level of task performance. Neuroscience 2018, 371, 119–125. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, T.; Ono, Y. Effect of middletemporal tDCS stimulation on dance-game exercise performance. Trans. Jpn. Soc. Med. Biol. Eng. 2017, 55, 503–505. [Google Scholar]
- Moreira, A.; Moscaleski, L.; Machado, D.G.D.S.; Bikson, M.; Unal, G.; Bradley, P.S.; Cevada, T.; da Silva, F.T.G.; Baptista, A.F.; Morya, E.; et al. Transcranial direct current stimulation during a prolonged cognitive task: The effect on cognitive and shooting performances in professional female basketball players. Ergonomics 2023, 66, 492–505. [Google Scholar] [CrossRef]
- Molero-Chamizo, A.; Alameda Bailén, J.R.; Garrido Béjar, T.; García López, M.; Jaén Rodríguez, I.; Gutiérrez Lérida, C.; Rivera-Urbina, G.N. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. Cogn. Affect. Behav. Neurosci. 2018, 18, 167–175. [Google Scholar] [CrossRef]
- Horvath, J.C.; Carter, O.; Forte, J.D. No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia 2016, 91, 544–552. [Google Scholar] [CrossRef]
- Vergallito, A.; Feroldi, S.; Pisoni, A.; Romero Lauro, L.J. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci. 2022, 12, 522. [Google Scholar] [CrossRef]
- Weightman, M.; Brittain, J.S.; Hall, A.; Miall, C.; Jenkinson, N. Timing is everything: Event-related transcranial direct current stimulation improves motor adaptation. Brain Stimul. 2022, 15, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, K.A.; Lehmann, A.C. Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annu. Rev. Psychol. 1996, 47, 273–305. [Google Scholar] [CrossRef] [PubMed]
- Dayan, E.; Cohen, L.G. Neuroplasticity subserving motor skill learning. Neuron 2011, 72, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Benali, H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 2005, 15, 161–167. [Google Scholar] [CrossRef]
- Kim, T.; Kim, H.; Wright, D.L. Improving consolidation by applying anodal transcranial direct current stimulation at primary motor cortex during repetitive practice. Neurobiol. Learn. Mem. 2021, 178, 107365. [Google Scholar] [CrossRef]
- Iezzi, E.; Suppa, A.; Conte, A.; Agostino, R.; Nardella, A.; Berardelli, A. Theta-burst stimulation over primary motor cortex degrades early motor learning. Eur. J. Neurosci. 2010, 31, 585–592. [Google Scholar] [CrossRef]
- Karni, A.; Meyer, G.; Jezzard, P.; Adams, M.M.; Turner, R.; Ungerleider, L.G. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995, 377, 155–158. [Google Scholar] [CrossRef]
- Marinelli, L.; Quartarone, A.; Hallett, M.; Frazzitta, G.; Ghilardi, M.F. The many facets of motor learning and their relevance for Parkinson’s disease. Clin. Neurophysiol. 2017, 128, 1127–1141. [Google Scholar] [CrossRef]
- Rivera-Urbina, G.N.; Molero-Chamizo, A.; Nitsche, M.A. Discernible effects of tDCS over the primary motor and posterior parietal cortex on different stages of motor learning. Brain Struct. Funct. 2022, 227, 1115–1131. [Google Scholar] [CrossRef]
- Hamzei, F.; Ritter, A.; Güllmar, D. Implicit Motor Learning Under Anodal or Cathodal tDCS During fMRI Induces Partially Distinct Network Responses. Eur. J. Neurosci. 2025, 61, e70053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luft, C.D.B.; Zioga, I.; Banissy, M.J.; Bhattacharya, J. Relaxing learned constraints through cathodal tDCS on the left dorsolateral prefrontal cortex. Sci. Rep. 2017, 7, 2916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaminski, E.; Hoff, M.; Sehm, B.; Taubert, M.; Conde, V.; Steele, C.J.; Ragert, P. Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neurosci. Lett. 2013, 552, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Ungerleider, L.G.; Doyon, J.; Karni, A. Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 2002, 78, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Hashemirad, F.; Fitzgerald, P.B.; Zoghi, M.; Jaberzadeh, S. Single-Session Anodal tDCS with Small-Size Stimulating Electrodes Over Frontoparietal Superficial Sites Does Not Affect Motor Sequence Learning. Front. Hum. Neurosci. 2017, 11, 153. [Google Scholar] [CrossRef]
- Minarik, T.; Sauseng, P.; Dunne, L.; Berger, B.; Sterr, A. Effects of anodal transcranial direct current stimulation on visually guided learning of grip force control. Biology 2015, 4, 173–186. [Google Scholar] [CrossRef]
- Guerra, A.; Lopez-Alonso, V.; Cheeran, B.; Suppa, A. Solutions for managing variability in non-invasive brain stimulation studies. Neurosci. Lett. 2017, 719, 133332. [Google Scholar] [CrossRef]
- Guerra, A.; Lopez-Alonso, V.; Cheeran, B.; Suppa, A. Variability in non-invasive brain stimulation studies: Reasons and results. Neurosci. Lett. 2017, 719, 133330. [Google Scholar] [CrossRef]
- Lopez-Alonso, V.; Cheeran, B.; Rio-Rodriguez, D.; Fernandez-Del-Olmo, M. Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms. Brain Stimul. 2014, 7, 372–380. [Google Scholar] [CrossRef]
- Wiethoff, S.; Hamada, M.; Rothwell, J.C. Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex. Brain Stimul. 2014, 7, 468–475. [Google Scholar] [CrossRef]
- Li Voti, P.; Conte, A.; Suppa, A.; Iezzi, E.; Bologna, M.; Aniello, M.S.; Berardelli, A. Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Exp. Brain Res. 2011, 212, 91–99. [Google Scholar] [CrossRef]
- Lopez-Alonso, V.; Cheeran, B.; Fernandez-del-Olmo, M. Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning. Brain Stimul. 2015, 8, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, M.; Pellicciari, M.C.; Rodella, C.; Miniussi, C. The interaction with task-induced activity is more important than polarization: A tDCS study. Brain Stimul. 2015, 8, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Saucedo Marquez, C.M.; Zhang, X.; Swinnen, S.P.; Meesen, R.; Wenderoth, N. Task-specific effect of transcranial direct current stimulation on motor learning. Front. Hum. Neurosci. 2013, 7, 333. [Google Scholar] [CrossRef] [PubMed]
- Batsikadze, G.; Moliadze, V.; Paulus, W.; Kuo, M.F.; Nitsche, M.A. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 2013, 591, 1987–2000. [Google Scholar] [CrossRef]
- Hardwick, R.M.; Rottschy, C.; Miall, R.C.; Eickhoff, S.B. A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 2013, 67, 283–297. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Doemkes, S.; Karakose, T.; Antal, A.; Liebetanz, D.; Lang, N.; Paulus, W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2007, 97, 3109–3117. [Google Scholar] [CrossRef]
- Jancke, L.; Koeneke, S.; Hoppe, A.; Rominger, C.; Hanggi, J. The architecture of the golfer’s brain. PLoS ONE 2009, 4, e4785. [Google Scholar] [CrossRef]
- Kearney, P. A distal focus of attention leads to superior performance on a golf putting task. Int. J. Sport. Exerc. Psychol. 2015, 13, 104–120. [Google Scholar] [CrossRef]
- Wulf, G.; Lauterbach, B.; Toole, T. The learning advantages of an external focus of attention in golf. Res. Q. Exerc. Sport. 1999, 70, 120–126. [Google Scholar] [CrossRef]
- Ishikura, T. Reduced relative frequency of knowledge of results without visual feedback in learning a golf-putting task. Percept. Mot. Skills 2008, 106, 225–233. [Google Scholar] [CrossRef]
- Keogh, J.W.; Hume, P.A. Evidence for biomechanics and motor learnig research improving golf performance. Sports Biomech. 2012, 11, 288–309. [Google Scholar] [CrossRef] [PubMed]
- Milton, J.; Solodkin, A.; Hlustik, P.; Small, S.L. The mind of expert motor performance is cool and focused. Neuroimage 2007, 35, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Munzert, J.; Maurer, H.; Reiser, M. Verbal-motor attention-focusing instructions influence kinematics and performance on a golf-putting task. J. Mot. Behav. 2014, 46, 309–318. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Alonso, V.; López-Bermúdez, G.; Pagaduan, J.C.; Sánchez-Molina, J.A. Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task. Sensors 2025, 25, 4297. https://doi.org/10.3390/s25144297
Lopez-Alonso V, López-Bermúdez G, Pagaduan JC, Sánchez-Molina JA. Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task. Sensors. 2025; 25(14):4297. https://doi.org/10.3390/s25144297
Chicago/Turabian StyleLopez-Alonso, Virginia, Gabriel López-Bermúdez, Jeffrey Cayaban Pagaduan, and Jose Andrés Sánchez-Molina. 2025. "Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task" Sensors 25, no. 14: 4297. https://doi.org/10.3390/s25144297
APA StyleLopez-Alonso, V., López-Bermúdez, G., Pagaduan, J. C., & Sánchez-Molina, J. A. (2025). Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task. Sensors, 25(14), 4297. https://doi.org/10.3390/s25144297