MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Monolayer MXene
2.3. Preparation of MXene Ink
2.4. Preparation of Photothermally Enhanced Paper Chips
2.5. Electrochemical Characterization of Photothermally Enhanced Paper Chips
2.6. Photothermal Sensing Testing of Photothermally Enhanced Paper Chips
2.7. Material Characterization
3. Results and Discussion
3.1. Characterization of AgNP@MXene
3.2. Characterization and Electrochemical Properties of AgNP@MXene-based Paper Chips
3.3. Photothermal Conversion Performance of AgNP@MXene-based Paper Chips
3.4. Sensitivity of AgNP@MXene-based Paper Chip Sensing Under Winter Solar Insolation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, J.; Tang, L.; Luo, Y.; Xu, J.; Ouyang, S. Research progress on drugs for diabetes based on insulin receptor/insulin receptor substrate. Biochem. Pharmacol. 2023, 217, 115830. [Google Scholar]
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.-D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [PubMed]
- Lewis, D.M.; Oser, T.K.; Wheeler, B.J. Continuous glucose monitoring. BMJ 2023, 380, e072420. [Google Scholar] [PubMed]
- Isaacs, D.; Bellini, N.J.; Biba, U.; Cai, A.; Close, K.L. Health Care Disparities in Use of Continuous Glucose Monitoring. Diabetes Technol. Ther. 2021, 23, S81–S87. [Google Scholar]
- Maeda, R.; Onoue, T.; Mizutani, K.; Suzuki, K.; Handa, T.; Kobayashi, T.; Iwama, S.; Miyata, T.; Sugiyama, M.; Hagiwara, D.; et al. Continuous glucose monitoring with low-glucose alerts in insulin-treated drivers with diabetes: A randomized crossover study. Diabetes. Res. Clin. Pract. 2025, 222, 112074. [Google Scholar]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, H.; Wang, Y.; Dong, Y.; Hasebe, Y.; Zhang, Z. Noninvasive detection of glucose using electrodeposited NiCo nanoparticles on a silk derived carbon. J. Alloys Compd. 2025, 1014, 178716. [Google Scholar]
- Kwon, H.; Alù, A. Active Mie-like resonance for noninvasive glucose detection. Phys. Rev. Appl. 2024, 21, 034060. [Google Scholar]
- Lopes, V.; Abreu, T.; Abrantes, M.; Nemala, S.S.; De Boni, F.; Prato, M.; Alpuim, P.; Capasso, A. Graphene-Based Glucose Sensors with an Attomolar Limit of Detection. J. Am. Chem. Soc. 2025, 147, 13059–13070. [Google Scholar]
- Sadeghi, P.; Noroozizadeh, S.; Alshawabkeh, R.; Sun, N.X. Machine Learning-Driven D-Glucose Prediction Using a Novel Biosensor for Non-Invasive Diabetes Management. Biosensors 2025, 15, 152. [Google Scholar]
- Padmanabhan, S.; Prakash, J. Optimal path length identification for accurate glucose sensing with photoacoustic derived optical rotation. Opt. Lett. 2025, 50, 149–152. [Google Scholar] [PubMed]
- Liu, D.; Liu, Z.; Feng, S.; Gao, Z.; Chen, R.; Cai, G.; Bian, S. Wearable Microfluidic Sweat Chip for Detection of Sweat Glucose and pH in Long-Distance Running Exercise. Biosensors 2023, 13, 157. [Google Scholar]
- Hou, Z.; Gao, T.; Liu, X.; Guo, W.; Bai, L.; Wang, W.; Yang, L.; Yang, H.; Wei, D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int. J. Biol. Macromol. 2023, 252, 126473. [Google Scholar]
- Ali, S.; Abdalla, I.; Chen, G.; Xiang, H.; Zhu, M. Non-invasive wearable nanoporous device for real-time monitoring of glucose in sweat. Compos. B. Eng. 2025, 303, 112613. [Google Scholar]
- Wang, Y.; Zheng, J.; Ma, Y.; Li, M.; Zhang, S.; Lu, Y.; Wang, Q.; Li, Y. A novel flexible non-enzymatic composite-metal glucose detection sensor in sweat based on platinum in situ plating of liquid metal. Materials. Today. Nano. 2025, 29, 100594. [Google Scholar]
- Jiang, S.; Zhang, Y.; Yang, Y.; Huang, Y.; Ma, G.; Luo, Y.; Huang, P.; Lin, J. Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. ACS Appl. 2019, 11, 10554–10558. [Google Scholar]
- Ferjaoui, Z.; Matuszewska, C.; Liu, J.; Corvis, Y.; Chanéac, C.; Viana, B.; Romdhane, F.B.; Scherman, D.; Mignet, N.; Richard, C. Highly Sensitive Detection of Glucose in the Presence of Serum Based on Signal Amplification of Persistent Luminescence Nanoparticles Functionalized by Glucose Oxidase. Adv. Opt. Mater. 2025, 13, 2402373. [Google Scholar]
- Franceschini, F.; Payo, M.R.; Schouteden, K.; Ustarroz, J.; Locquet, J.P.; Taurino, I. MBE Grown Vanadium Oxide Thin Films for Enhanced Non-Enzymatic Glucose Sensing. Adv. Funct. Mater. 2023, 33, 2304037. [Google Scholar]
- Sigolaeva, L.V.; Efremova, O.V.; Pergushov, D.V. Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel. Mendeleev. Commun. 2023, 33, 559–561. [Google Scholar]
- Ning, X.; Zhang, Y.; Yuan, T.; Li, Q.; Tian, J.; Guan, W.; Liu, B.; Zhang, W.; Xu, X.; Zhang, Y. Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design. Int. J. Mol. Sci. 2018, 19, 425. [Google Scholar]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [PubMed]
- Feng, A.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mat. Des. 2017, 114, 161–166. [Google Scholar]
- Liu, Y.; Xiao, H.; Goddard, W.A. Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856. [Google Scholar] [PubMed]
- Wang, B.; Li, J.; Wu, Z.; Sheng, N.; Zhang, M.; Han, Z.; Jin, M.; Li, J.; Lv, X.; Ou, K.; et al. Salinity power generation based biocompatible bacterial cellulose/MXene membrane for biological power source. Nano Energy. 2022, 102, 107702. [Google Scholar]
- Bacal, C.J.O.; Usman, K.A.S.; Rashed, A.O.; Maina, J.W.; Sharp, J.A.; Greene, G.W.; Nandurkar, H.H.; Dwyer, K.M.; Razal, J.M.; Dumée, L.F. Biocompatible MXene-reinforced molecularly imprinted membranes for simultaneous filtration and acetaminophen capture. Sep. Purif. Technol. 2024, 348, 127663. [Google Scholar]
- Rafieerad, A.; Amiri, A.; Sequiera, G.L.; Yan, W.; Chen, Y.; Polycarpou, A.A.; Dhingra, S. Development of Fluorine-Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes. Adv. Funct. Mater. 2021, 31, 2100015. [Google Scholar]
- Zhang, C.; Zong, P.-a.; Ge, Z.; Ge, Y.; Zhang, J.; Rao, Y.; Liu, Z.; Huang, W. MXene-based wearable thermoelectric respiration sensor. Nano Energy 2023, 118, 109037. [Google Scholar]
- Chen, R.; Jia, X.; Zhou, H.; Ren, S.; Han, D.; Li, S.; Gao, Z. Applications of MXenes in wearable sensing: Advances, challenges, and prospects. Mater. Today 2024, 75, 359–385. [Google Scholar]
- Yuan, R.; Yang, Y.; Zou, B.; Zhang, Y. MXene-enabled gas sensors for wearable breath monitoring. Chem. Eng. J. 2025, 510, 161414. [Google Scholar]
- He, J.; Butson, J.D.; Gu, R.; Loy, A.C.M.; Fan, Q.; Qu, L.; Li, G.K.; Gu, Q. MXene-Supported Single-Atom Electrocatalysts. Adv. Sci. 2025, 12, 2414674. [Google Scholar]
- Wang, H.; Li, X.; Deng, Y.; Jiang, J.; Ma, H.; Zou, J. Advances in MXene-based single-atom catalysts for electrocatalytic applications. Coord. Chem. Rev. 2025, 529, 216462. [Google Scholar]
- Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals. Small 2010, 6, 2272–2280. [Google Scholar] [PubMed]
- Chugh, V.; Bhattacharjya, T.; Das, C.; Tripathy, K.; Bhattacharjee, M. Flexible Electrochemical Sensing Label for the Detection of Glucose Adulteration in Honey. IEEE Sens. J. 2024, 24, 13823–13830. [Google Scholar]
- Zhu, B.; Li, X.; Zhou, L.; Su, B. An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis 2022, 34, 237–245. [Google Scholar]
- Bhuvaneshwari, G.; Ponpandian, N.; Viswanathan, C. Deciphering oxidation mechanism of partially oxidized Ti3C2Tₓ MXene Flakes and its electrochemical behaviour towards estradiol detection. Surf. Interfaces 2025, 67, 106583. [Google Scholar]
- Ko, M.; Mendecki, L.; Eagleton, A.M.; Durbin, C.G.; Stolz, R.M.; Meng, Z.; Mirica, K.A. Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, Y.; Wu, Y.; Chang, F.; Zhu, X.; Zhang, X.; Ma, N.; Wang, Y.; Abd-El-Aziz, A.S. MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments. Sensors 2025, 25, 4273. https://doi.org/10.3390/s25144273
Yang Y, Zhu Y, Wu Y, Chang F, Zhu X, Zhang X, Ma N, Wang Y, Abd-El-Aziz AS. MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments. Sensors. 2025; 25(14):4273. https://doi.org/10.3390/s25144273
Chicago/Turabian StyleYang, Yandong, Yajun Zhu, Yifei Wu, Fan Chang, Xu Zhu, Xinyue Zhang, Ning Ma, Yushu Wang, and Alaa S. Abd-El-Aziz. 2025. "MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments" Sensors 25, no. 14: 4273. https://doi.org/10.3390/s25144273
APA StyleYang, Y., Zhu, Y., Wu, Y., Chang, F., Zhu, X., Zhang, X., Ma, N., Wang, Y., & Abd-El-Aziz, A. S. (2025). MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments. Sensors, 25(14), 4273. https://doi.org/10.3390/s25144273