Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit
Abstract
Highlights
- In patients with adolescent idiopathic scoliosis (AIS), the main thoracic (MT) curve showed a positive correlation with mediolateral gait stability, whereas thoracic kyphosis (TK) showed a negative correlation.
- A gait symmetry analysis revealed distinct correlations between spinal curvature and mediolateral trunk acceleration across different quadrants.
- Patients with AIS who have right-convex MT curves may experience a leftward shift in their center of gravity, thus affecting gait stability.
- A comprehensive understanding of the relationship between spinal deformities and gait patterns can inform the development of targeted rehabilitation strategies for patients with AIS.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Spinal Morphometry Using X-Ray Imaging
2.3. Gait Analysis Using IMU
2.4. Statistical Analyses
3. Results
3.1. Lenke Classification and Spinal Morphometry
3.2. Gait Analysis
3.3. Correlation Between Spinal Morphometry and Gait Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef]
- Grauers, A.; Einarsdottir, E.; Gerdhem, P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016, 11, 45. [Google Scholar] [CrossRef]
- Horne, J.P.; Flannery, R.; Usman, S. Adolescent Idiopathic scoliosis: Diagnosis and management. Am. Fam. Physician 2014, 89, 193–198. [Google Scholar]
- Yang, H.; Jia, X.; Hai, Y. Posterior minimally invasive scoliosis surgery versus the standard posterior approach for the management of adolescent idiopathic scoliosis: An updated meta-analysis. J. Orthop. Surg. Res. 2022, 17, 58. [Google Scholar] [CrossRef]
- Seleviciene, V.; Cesnaviciute, A.; Strukcinskiene, B.; Marcinowicz, L.; Strazdiene, N.; Genowska, A. Physiotherapeutic scoliosis-specific exercise methodologies used for conservative treatment of adolescent idiopathic scoliosis, and their effectiveness: An extended literature review of current research and practice. Int. J. Environ. Res. Public Health 2022, 19, 9240. [Google Scholar] [CrossRef]
- Oba, H.; Watanabe, K.; Asada, T.; Matsumura, A.; Sugawara, R.; Takahashi, S.; Ueda, H.; Suzuki, S.; Doi, T.; Takeuchi, T. Effects of physiotherapeutic scoliosis-specific exercise for adolescent idiopathic scoliosis cobb angle: A systematic review. Spine Surg. Relat. Res. 2024, 9, 120–129. [Google Scholar] [CrossRef]
- Weiss, H.-R.; Moramarco, M.M.; Borysov, M.; Ng, S.Y.; Lee, S.G.; Nan, X.; Moramarco, K.A. Postural rehabilitation for adolescent idiopathic scoliosis during growth. Asian Spine J. 2016, 10, 570–581. [Google Scholar] [CrossRef]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2016, 13, 3. [Google Scholar] [CrossRef]
- Higuchi, J.; Tajima, N.; Hirakawa, S.; Satoh, K. Gravity sway in idiopathic scoliosis [tokuhatsusei sokuwan-shō ni okeru heikō kinō no kaiseki]. Seikei Geka Saigai Geka 1993, 42, 1487–1489. [Google Scholar] [CrossRef]
- Nault, M.-L.; Allard, P.; Hinse, S.; Le Blanc, R.; Caron, O.; Labelle, H.; Sadeghi, H. Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine 2002, 27, 1911–1917. [Google Scholar] [CrossRef]
- Paul, J.C.; Patel, A.; Bianco, K.; Godwin, E.; Naziri, Q.; Maier, S.; Lafage, V.; Paulino, C.; Errico, T.J. Gait stability improvement after fusion surgery for adolescent idiopathic scoliosis is influenced by corrective measures in coronal and sagittal planes. Gait Posture 2014, 40, 510–515. [Google Scholar] [CrossRef]
- Moe-Nilssen, R. Test-retest reliability of trunk accelerometry during standing and walking. Arch. Phys. Med. Rehabil. 1998, 79, 1377–1385. [Google Scholar] [CrossRef]
- Trabassi, D.; Castiglia, S.F.; Bini, F.; Marinozzi, F.; Ajoudani, A.; Lorenzini, M.; Chini, G.; Varrecchia, T.; Ranavolo, A.; De Icco, R.; et al. Optimizing rare disease gait classification through data balancing and generative AI: Insights from hereditary cerebellar ataxia. Sensors 2024, 24, 3613–3636. [Google Scholar] [CrossRef]
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. 2001, 83, 1169–1181. [Google Scholar] [CrossRef]
- Slattery, C.; Verma, K. Classifications in brief: The lenke classification for adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 2018, 476, 2271–2276. [Google Scholar] [CrossRef]
- Malfair, D.; Flemming, A.K.; Dvorak, M.F.; Munk, P.L.; Vertinsky, A.T.; Heran, M.K.; Graeb, D.A. Radiographic evaluation of scoliosis: Review. Am. J. Roentgenol. 2010, 194, S8–S22. [Google Scholar] [CrossRef]
- Severijns, P.; Moke, L.; Overbergh, T.; Beaucage-Gauvreau, E.; Ackermans, T.; Desloovere, K.; Scheys, L. Dynamic sagittal alignment and compensation strategies in adult spinal deformity during walking. Spine J. 2021, 21, 1059–1071. [Google Scholar] [CrossRef]
- Menz, H.B. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Hirata, S.; Doi, T.; Asai, T.; Inoue, J.; Makiura, D.; Ando, H.; Kurosaka, M.; Miura, Y. The usefulness of a new gait symmetry parameter derived from lissajous figures of tri-axial acceleration signals of the trunk. J. Phys. Ther. Sci. 2012, 24, 405–408. [Google Scholar] [CrossRef]
- Sekine, M.; Tamura, T.; Yoshida, M.; Suda, Y.; Kimura, Y.; Miyoshi, H.; Kijima, Y.; Higashi, Y.; Fujimoto, T. A gait abnormality measure based on root mean square of trunk acceleration. J. Neuroeng. Rehabil. 2013, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Liu, X.; Cai, D.; Zhang, R.; Li, F.; Fang, H.; Huang, J.; Qiu, C.; Zhan, H. Wearable accelerometers reveal objective assessment of walking symmetry and regularity in idiopathic scoliosis patients. PeerJ 2024, 12, e17739. [Google Scholar] [CrossRef]
- Mahaudens, P.; Detrembleur, C.; Mousny, M.; Banse, X. Gait in adolescent idiopathic scoliosis: Energy cost analysis. Eur. Spine J. 2009, 18, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Mahaudens, P.; Dalemans, F.; Banse, X.; Mousny, M.; Cartiaux, O.; Detrembleur, C. Gait in patients with adolescent idiopathic scoliosis. Effect of surgery at 10 years of follow-up. Gait Posture 2018, 61, 141–148. [Google Scholar] [CrossRef]
- Dean, J.C.; Alexander, N.B.; Kuo, A.D. The effect of lateral stabilization on walking in young and old adults. IEEE Trans. Biomed. Eng. 2007, 54, 1919–1926. [Google Scholar] [CrossRef]
- Allum, J.H.J.; Oude Nijhuis, L.B.; Carpenter, M.G. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects. Exp. Brain Res. 2008, 184, 391–410. [Google Scholar] [CrossRef]
- Yamamoto, S. Gait analysis of patients with cerebrovascular disease [Nōkekkan shōgai no hokō bunseki]. Rigakuryoho Kagaku 2002, 17, 3–10. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, S.H.; Goh, T.S.; Son, S.M.; Lee, J.S. A meta-analysis of gait in adolescent idiopathic scoliosis. J. Clin. Neurosci. 2020, 81, 196–200. [Google Scholar] [CrossRef]
- Daryabor, A.; Arazpour, M.; Sharifi, G.; Bani, M.A.; Aboutorabi, A.; Golchin, N. Gait and energy consumption in adolescent idiopathic scoliosis: A literature review. Ann. Phys. Rehabil. Med. 2017, 60, 107–116. [Google Scholar] [CrossRef]
- Narita, M.; Okada, S.; Koizumi, D.; Kitabayashii, Y.; Kato, Y.; Takeshima, N. Comparison of static and dynamic balance between middle-aged and elderly women [Seiteki oyobi dōteki baransu nō no karei ni yoru eikyō: Chūnen to kōnen josei no hikaku kara]. Rigakuryoho Kagaku 2015, 30, 627–633. [Google Scholar] [CrossRef]
- Morifuji, T.; Shimada, T.; Sakamoto, R.; Ogura, A.; Ueno, T.; Kanazawa, A. Relationship of spinal mobility in extension with balance and walking ability in patients with kyphosis [Sekichū kōwan henkei kanja ni okeru sekichū shinten kadōsei to baransu, hokō nōryoku to no kankei]. Rigakuryoho Kagaku 2010, 25, 735–739. [Google Scholar] [CrossRef]
- Ohashi, M.; Watanabe, K.; Hirano, T.; Hasegawa, K.; Katsumi, K.; Shoji, H.; Mizouchi, T.; Endo, N. Flexibility of the thoracic curve and three-dimensional thoracic kyphosis can predict pulmonary function in nonoperatively treated adult patients with adolescent idiopathic scoliosis. J. Orthop. Sci. 2020, 25, 551–556. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Variables |
---|---|
n | 23 |
Sex (male/female ratio) | 0:23 |
Age (years) | 14.1 ± 1.14 |
Height (m) | 1.54 ± 0.09 |
Weight (kg) | 43.7 ± 6.38 |
BMI (kg/m2) | 18.4 ± 1.72 |
Lenke Classification | |
---|---|
Type 1 (A−:AN:B−:BN:CN) | 11 (1:3:2:4:1) |
Type 2 (BN) | 1 (1) |
Type 3 (B−:CN) | 2 (1:1) |
Type 4 | 0 |
Type 5 (C−:CN) | 5 (1:4) |
Type 6 (C−:CN) | 4 (2:2) |
Spinal morphological changes | |
Main thoracic curve (degrees) | 39.1 ± 10.1 |
Thoracolumbar curve (degrees) | 33.8 ± 10.7 |
Thoracic kyphosis (degrees) | 12.6 ± 9.2 |
Comfortable walking speed (m/s) | 1.21 ± 0.10 |
Stride-to-stride time variability (%) | 2.32 ± 1.14 |
Root mean square (RMS) | |
x: Mediolateral direction (m/s2) | 0.89 ± 0.16 |
y: Anteroposterior direction (m/s2) | 1.54 ± 0.25 |
z: Vertical direction (m/s2) | 1.58 ± 0.25 |
t: Magnitude of the RMS vector in three directions (m/s2) | 2.39 ± 0.27 |
Lissajous index | |
Coronal plane (%) | 16.1 ± 12.9 |
Transverse plane (%) | 17.8 ± 17.0 |
Peak mediolateral acceleration in the frontal plane #1 | |
1st quadrant (m/s2) | 5.06 ± 2.25 |
2nd quadrant (m/s2) | 5.32 ± 1.98 |
3rd quadrant (m/s2) | 3.47 ± 1.70 |
4th quadrant (m/s2) | 3.36 ± 1.12 |
MT | TL | TK | |
---|---|---|---|
Comfortable walking speed | 0.300 (0.164) | −0.190 (0.386) | 0.166 (0.451) |
Stride-to-stride time variability | 0.046 (0.835) | −0.023 (0.915) | −0.108 (0.625) |
Root mean square (RMS) | |||
x: Mediolateral direction | 0.536 (0.008) | −0.288 (0.183) | −0.550 (0.007) |
y: Anteroposterior direction | 0.349 (0.103) | −0.109 (0.622) | 0.019 (0.930) |
z: Vertical direction | −0.056 (0.800) | 0.062 (0.778) | 0.121 (0.582) |
t: Magnitude of the RMS vector in the three directions | 0.294 (0.173) | −0.134 (0.543) | −0.075 (0.733) |
Lissajous index | |||
Coronal plane | 0.223 (0.305) | −0.065 (0.769) | −0.167 (0.446) |
Transverse plane | 0.367 (0.085) | −0.052 (0.814) | −0.017 (0.939) |
Peak mediolateral acceleration in the frontal plane #1 | |||
1st quadrant | 0.377 (0.076) | −0.283 (0.190) | −0.478 (0.021) |
2nd quadrant | 0.463 (0.026) | −0.125 (0.570) | −0.187 (0.393) |
3rd quadrant | 0.387 (0.068) | −0.254 (0.243) | −0.288 (0.182) |
4th quadrant | 0.361 (0.090) | −0.048 (0.829) | −0.517 (0.012) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, K.; Tsubouchi, Y.; Abe, T.; Takeo, Y.; Iwakiri, M.; Kataoka, T.; Inoue, K.; Sako, N.; Kataoka, M.; Miyazaki, M.; et al. Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit. Sensors 2025, 25, 4265. https://doi.org/10.3390/s25144265
Takahashi K, Tsubouchi Y, Abe T, Takeo Y, Iwakiri M, Kataoka T, Inoue K, Sako N, Kataoka M, Miyazaki M, et al. Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit. Sensors. 2025; 25(14):4265. https://doi.org/10.3390/s25144265
Chicago/Turabian StyleTakahashi, Kento, Yuta Tsubouchi, Tetsutaro Abe, Yuhi Takeo, Marino Iwakiri, Takashi Kataoka, Kohei Inoue, Noriaki Sako, Masashi Kataoka, Masashi Miyazaki, and et al. 2025. "Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit" Sensors 25, no. 14: 4265. https://doi.org/10.3390/s25144265
APA StyleTakahashi, K., Tsubouchi, Y., Abe, T., Takeo, Y., Iwakiri, M., Kataoka, T., Inoue, K., Sako, N., Kataoka, M., Miyazaki, M., & Kaku, N. (2025). Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit. Sensors, 25(14), 4265. https://doi.org/10.3390/s25144265