Application of a Transfer Learning Model Combining CNN and Self-Attention Mechanism in Wireless Signal Recognition
Abstract
1. Introduction
- Proposed TransConvNet model: We design a hybrid architecture that combines CNN and self-attention mechanism to achieve effective signal recognition, capturing local and global dependencies in signal data.
- Optimization for low signal-to-noise ratio and low sampling rate: We pay special attention to optimizing signal recognition under low sampling rates and noisy environments, where traditional methods often perform poorly.
- Transfer learning: We incorporate transfer learning to leverage pre-trained models, allowing our method to achieve superior performance even with limited training data.
- Comprehensive evaluation: We evaluate our model on a real-world wireless signal dataset and demonstrate that it significantly outperforms baseline models in terms of accuracy, robustness, and noise resistance.
2. Related Work
2.1. Wireless Signal Recognition
2.2. Convolutional Neural Networks in Signal Processing
2.2.1. Self-Attention Mechanisms and Transformers
2.2.2. Transfer Learning in Wireless Signal Recognition
3. Methodology
3.1. Data Preprocessing
3.2. Model Architecture
3.2.1. CNN Feature Extraction
3.2.2. Transformer Encoding:
3.2.3. Classification Layer
3.3. Transfer Learning Strategy
4. Experiments
4.1. Experimental Setup
4.1.1. Dataset and Preprocessing
4.1.2. Data Augmentation and Noise Handling
4.1.3. Model Configuration
4.1.4. Training Procedure
4.1.5. Testing and Evaluation Metrics
4.2. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R. Network 2030 A Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond; ITU Telecommunication Standardization Sector: Geneva, Switzerland, 2019. [Google Scholar]
- Ali, A.; Hamouda, W. Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Commun. Surv. Tutorials 2016, 19, 1277–1304. [Google Scholar] [CrossRef]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Tekbiyik, K.; Akbunar, Ö.; Ekti, A.R.; Görçin, A.; Kurt, G.K. Multi–dimensional wireless signal identification based on support vector machines. IEEE Access 2019, 7, 138890–138903. [Google Scholar] [CrossRef]
- Skiribou, C.; Elbahhar, F. V2X wireless technology identification using time–frequency analysis and random forest classifier. Sensors 2021, 21, 4286. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Fonseca, E.; Shahid, A.; Kist, M.; DaSilva, L.A.; Moerman, I.; De Poorter, E. Towards low-complexity wireless technology classification across multiple environments. Ad Hoc Netw. 2019, 91, 101881. [Google Scholar] [CrossRef]
- Riyaz, S.; Sankhe, K.; Ioannidis, S.; Chowdhury, K. Deep learning convolutional neural networks for radio identification. IEEE Commun. Mag. 2018, 56, 146–152. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Y.; Fu, X.; Guo, L.; Lin, Y.; Gui, G. Energy-Efficient Wireless Technology Recognition Method Using Time-Frequency Feature Fusion Spiking Neural Networks. IEEE Trans. Inf. Forensics Secur. 2025, 20, 2252–2265. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Yang, M.; Song, Y.; Cai, C.; Gu, H. Blind LTE-U/WiFi coexistence system using convolutional neural network. IEEE Access 2019, 8, 15923–15930. [Google Scholar] [CrossRef]
- Maglogiannis, V.; Shahid, A.; Naudts, D.; De Poorter, E.; Moerman, I. Enhancing the coexistence of LTE and Wi-Fi in unlicensed spectrum through convolutional neural networks. IEEE Access 2019, 7, 28464–28477. [Google Scholar] [CrossRef]
- Wang, D.; Lin, M.; Zhang, X.; Huang, Y.; Zhu, Y. Automatic modulation classification based on CNN-transformer graph neural network. Sensors 2023, 23, 7281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qu, Y.; Zhou, X.; Zhu, Y.; Zhang, L.; Lin, J.; Jiang, H. CTDNets: A High-Precision Hybrid Deep Learning Model for Modulation Recognition with Early-Stage Layer Fusion. Electronics 2024, 13, 4641. [Google Scholar] [CrossRef]
- Mendis, G.J.; Wei, J.; Madanayake, A. Deep learning-based automated modulation classification for cognitive radio. In Proceedings of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016; pp. 1–6. [Google Scholar]
- Panigrahi, S.; Nanda, A.; Swarnkar, T. A survey on transfer learning. In Proceedings of the Intelligent and Cloud Computing: Proceedings of ICICC 2019, Ostrava, Czech Republic, 21–22 March 2019; Volume 1, pp. 781–789. [Google Scholar]
- Nguyen, C.T.; Van Huynh, N.; Chu, N.H.; Saputra, Y.M.; Hoang, D.T.; Nguyen, D.N.; Pham, Q.V.; Niyato, D.; Dutkiewicz, E.; Hwang, W.J. Transfer learning for wireless networks: A comprehensive survey. Proc. IEEE 2022, 110, 1073–1115. [Google Scholar] [CrossRef]
- Agarwal, N.; Sondhi, A.; Chopra, K.; Singh, G. Transfer learning: Survey and classification. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2021; pp. 145–155. [Google Scholar]
- Qin, Z.; Ye, H.; Li, G.Y.; Juang, B.H.F. Deep learning in physical layer communications. IEEE Wirel. Commun. 2019, 26, 93–99. [Google Scholar] [CrossRef]
- Rajendran, S.; Meert, W.; Giustiniano, D.; Lenders, V.; Pollin, S. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 433–445. [Google Scholar] [CrossRef]
- Van Huynh, N.; Li, G.Y. Transfer learning for signal detection in wireless networks. IEEE Wirel. Commun. Lett. 2022, 11, 2325–2329. [Google Scholar] [CrossRef]
- Bu, K.; He, Y.; Jing, X.; Han, J. Adversarial transfer learning for deep learning based automatic modulation classification. IEEE Signal Process. Lett. 2020, 27, 880–884. [Google Scholar] [CrossRef]
- Li, X.; Dong, F.; Zhang, S.; Guo, W. A survey on deep learning techniques in wireless signal recognition. Wirel. Commun. Mob. Comput. 2019, 2019, 5629572. [Google Scholar] [CrossRef]
- Nandi, A.K.; Azzouz, E.E. Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 1998, 46, 431–436. [Google Scholar] [CrossRef]
- Wang, L.X.; Ren, Y.J. Recognition of digital modulation signals based on high order cumulants and support vector machines. In Proceedings of the 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, Sanya, China, 8–9 August 2009; pp. 271–274. [Google Scholar]
- Ya, T.; Yun, L.; Haoran, Z.; Yu, W.; Guan, G.; Shiwen, M. Large-scale real-world radio signal recognition with deep learning. Chin. J. Aeronaut. 2022, 35, 35–48. [Google Scholar]
- Yashashwi, K.; Sethi, A.; Chaporkar, P. A learnable distortion correction module for modulation recognition. IEEE Wirel. Commun. Lett. 2018, 8, 77–80. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Yang, S.; Li, S. Robust automated VHF modulation recognition based on deep convolutional neural networks. IEEE Commun. Lett. 2018, 22, 946–949. [Google Scholar] [CrossRef]
- Mustaqeem, N.; Kwon, S. A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 2019, 20, 183. [Google Scholar] [CrossRef]
- Kulin, M.; Kazaz, T.; Moerman, I.; De Poorter, E. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access 2018, 6, 18484–18501. [Google Scholar] [CrossRef]
- Selim, A.; Paisana, F.; Arokkiam, J.A.; Zhang, Y.; Doyle, L.; DaSilva, L.A. Spectrum monitoring for radar bands using deep convolutional neural networks. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Liang, Z.; Tao, M.; Xie, J.; Yang, X.; Wang, L. A radio signal recognition approach based on complex-valued CNN and self-attention mechanism. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1358–1373. [Google Scholar] [CrossRef]
- Wei, S.; Qu, Q.; Zeng, X.; Liang, J.; Shi, J.; Zhang, X. Self-attention Bi-LSTM networks for radar signal modulation recognition. IEEE Trans. Microw. Theory Tech. 2021, 69, 5160–5172. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Liu, C.; Wei, Z.; Ng, D.W.K.; Yuan, J.; Liang, Y.C. Deep transfer learning for signal detection in ambient backscatter communications. IEEE Trans. Wirel. Commun. 2020, 20, 1624–1638. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, W.; Gao, L. Radar signal recognition based on transfer learning and feature fusion. Mob. Netw. Appl. 2020, 25, 1563–1571. [Google Scholar] [CrossRef]
- An, S.; Bhat, G.; Gumussoy, S.; Ogras, U. Transfer learning for human activity recognition using representational analysis of neural networks. ACM Trans. Comput. Healthc. 2023, 4, 1–21. [Google Scholar] [CrossRef]
- Milosheski, L.; Bertalanič, B.; Fortuna, C.; Mohorčič, M. Radio Signals Recognition with Unsupervised Deep Learning: A Survey. TechRxiv 2025. [Google Scholar] [CrossRef]
- Janiar, S.B.; Wang, P. Intelligent anti-jamming based on deep reinforcement learning and transfer learning. IEEE Trans. Veh. Technol. 2024, 73, 8825–8834. [Google Scholar] [CrossRef]
- Dhekane, S.G.; Ploetz, T. Transfer learning in human activity recognition: A survey. arXiv 2024, arXiv:2401.10185. [Google Scholar]
- Murali, V.; Sudeep, P. Image denoising using DnCNN: An exploration study. In Advances in Communication Systems and Networks; Springer: Singapore, 2020; pp. 847–859. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019, 8, 4806–4813. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Di Bucchianico, A. Coefficient of determination (R2). In Encyclopedia of Statistics in Quality and Reliability; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Percept. Psychophys. 1971, 9, 40–50. [Google Scholar] [CrossRef]
Model | Accuracy (%) | RMSE | Variance | |
---|---|---|---|---|
TransConvNet | 92.1 | 0.84 | 0.45 | 0.75 |
LSTM | 88.2 | 1.01 | 0.33 | 0.65 |
CNN | 86.9 | 1.04 | 0.31 | 0.63 |
RNN | 83.5 | 1.24 | 0.21 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zhu, C.; Hu, L.; Liu, P. Application of a Transfer Learning Model Combining CNN and Self-Attention Mechanism in Wireless Signal Recognition. Sensors 2025, 25, 4202. https://doi.org/10.3390/s25134202
Wei W, Zhu C, Hu L, Liu P. Application of a Transfer Learning Model Combining CNN and Self-Attention Mechanism in Wireless Signal Recognition. Sensors. 2025; 25(13):4202. https://doi.org/10.3390/s25134202
Chicago/Turabian StyleWei, Wu, Chenqi Zhu, Lifan Hu, and Pengfei Liu. 2025. "Application of a Transfer Learning Model Combining CNN and Self-Attention Mechanism in Wireless Signal Recognition" Sensors 25, no. 13: 4202. https://doi.org/10.3390/s25134202
APA StyleWei, W., Zhu, C., Hu, L., & Liu, P. (2025). Application of a Transfer Learning Model Combining CNN and Self-Attention Mechanism in Wireless Signal Recognition. Sensors, 25(13), 4202. https://doi.org/10.3390/s25134202