On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS
Abstract
1. Introduction
2. Principle and Methods
2.1. Principle
2.2. System Structure
2.3. System Circuit
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DAC | Digital-to-analog convertor |
ADC | Analog-to-digital convertor |
PWM | Pulse-width modulation |
PID | Proportion-integration-differentiation |
TDLAS | Tunable diode laser absorption spectroscopy |
MCU | Microcontroller unit |
DFB | Distributed feedback |
PD | Photodetector |
PCB | Printed circuit board |
NMOS | N-metal-oxide-semiconductor |
LPF | Low-pass filter |
WMS | Wavelength modulation spectroscopy |
FPGA | Field programmable gate array |
NTC | Negative temperature coefficient |
TEC | Thermoelectric cooler |
References
- Deng, J.; Li, Q.; Xiao, Y.; Wen, H. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim. Acta 2017, 653, 106–115. [Google Scholar] [CrossRef]
- Tan, L.; Li, S.; Li, W.; Shou, E.; Lu, Q. Effects of Oxygen Staging and Excess Oxygen on O2/CO2 Combustion with a High Oxygen Concentration in a Circulating Fluidized Bed. Energy Fuels 2014, 28, 2069–2075. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, R.; Qing, S.; Liu, Y.; Zhang, A. Study on combustion characteristics of young lignite in mixed O2/CO2 atmosphere. Appl. Therm. Eng. 2017, 110, 1240–1246. [Google Scholar] [CrossRef]
- Boskovic, G.; Wolf, D.; Brückner, A.; Baerns, M. Deactivation of a commercial catalyst in the epoxidation of ethylene to ethylene oxide—Basis for accelerated testing. J. Catal. 2004, 224, 187–196. [Google Scholar] [CrossRef]
- Salmi, T.; Hernández Carucci, J.; Roche, M.; Eränen, K.; Wärnå, J.; Murzin, D. Microreactors as tools in kinetic investigations: Ethylene oxide formation on silver catalyst. Chem. Eng. Sci. 2013, 87, 306–314. [Google Scholar] [CrossRef]
- Schrama, F.N.H.; Beunder, E.M.; Van den Berg, B.; Yang, Y.; Boom, R. Sulphur removal in ironmaking and oxygen steelmaking. Ironmak. Steelmak. 2017, 44, 333–343. [Google Scholar] [CrossRef]
- Liu, Q.; Xiong, Y.; Zhang, C.; Wang, X.; Syed-Hassan, S.S.A.; Deng, W.; Xu, J.; Wang, Y.; Su, S.; Xiang, J. Effects of oxygen concentration on the formation of heavy components in bio-oil during biomass oxidative pyrolysis. Fuel 2025, 384, 134046. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, S.; Yin, C. Local learning-based model-free adaptive predictive control for adjustment of oxygen concentration in syngas manufacturing industry. IET Control Theory Appl. 2016, 10, 1384–1394. [Google Scholar] [CrossRef]
- Morsy, M.H. Modeling study on the production of hydrogen/syngas via partial oxidation using a homogeneous charge compression ignition engine fueled with natural gas. Int. J. Hydrogen Energy 2014, 39, 1096–1104. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, D.; Zhang, M.; Li, J. Diode laser absorption spectroscopy for real-time detection of breath oxygen. Infrared Phys. Technol. 2023, 133, 104815. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Wang, L.; Gao, Q.; Zhang, Z. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell. Sens. Actuators B Chem. 2017, 241, 1076–1081. [Google Scholar] [CrossRef]
- Fathy, A.; Sabry, Y.M.; Hunter, I.W.; Khalil, D.; Bourouina, T. Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review. Laser Photonics Rev. 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Lin, S.; Chang, J.; Sun, J.; Xu, P. Improvement of the Detection Sensitivity for Tunable Diode Laser Absorption Spectroscopy: A Review. Front. Phys. 2022, 10, 853966. [Google Scholar] [CrossRef]
- Li, J.; Yu, B.; Zhao, W.; Chen, W. A Review of Signal Enhancement and Noise Reduction Techniques for Tunable Diode Laser Absorption Spectroscopy. Appl. Spectrosc. Rev. 2014, 49, 666–691. [Google Scholar] [CrossRef]
- Jatana, G.S.; Perfetto, A.K.; Geckler, S.C.; Partridge, W.P. Absorption spectroscopy based high-speed oxygen concentration measurements at elevated gas temperatures. Sens. Actuators B Chem. 2019, 293, 173–182. [Google Scholar] [CrossRef]
- Mao, M.; Gong, T.; Yuan, K.; Li, L.; Guo, G.; Sun, X.; Tian, Y.; Qiu, X.; Fittschen, C.; Li, C. A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell. Sensors 2023, 23, 8249. [Google Scholar] [CrossRef]
- Luo, Q.; Song, C.; Yang, C.; Gui, W.; Sun, Y.; Jeffrey, Z. Headspace Oxygen Concentration Measurement for Pharmaceutical Glass Bottles in Open-Path Optical Environment Using TDLAS/WMS. IEEE Trans. Instrum. Meas. 2020, 69, 5828–5842. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Li, Y.; Luo, Q.; Yang, C.; Wang, Y.; Gui, W. Multiple Harmonic Information Fusion for Residual Oxygen Concentration Analysis of Pharmaceutical Glass Vials. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Gao, L.; Wu, H.; Wu, Y.; Lu, J.; Zhang, Y.; Wang, Y.; Shao, J.; Liu, W. Non-invasive and high sensitivity oxygen concentration measurement of penicillin vials in a short optical path by interference fringes suppression. Opt. Lasers Eng. 2025, 186, 108845. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Luo, Q.; Yang, C.; Gui, W. An improved residual oxygen detection method by using axis-sectional multi-reflection within optical-length-limited pharmaceutical vials. Measurement 2023, 222, 113667. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhu, S.; Li, X.; Zhao, H.; Li, X.; Zhang, H.; Jiang, H.; Lu, X.; Kong, W.; et al. Development and measurement of airborne oxygen sensor for aircraft inerting system based on TDLAS with pressure compensation and 2f/1f normalized method. Infrared Phys. Technol. 2023, 131, 104689. [Google Scholar] [CrossRef]
- Gao, G.; Chen, B.; Hu, B. A system for gas sensing employing correlation spectroscopy and wavelength modulation techniques with a multimode diode laser. Measurement 2013, 46, 1657–1662. [Google Scholar] [CrossRef]
- Wang, J.; Sanders, S.T.; Jeffries, J.B.; Hanson, R.K. Oxygen measurements at high pressures with vertical cavity surface-emitting lasers. Appl. Phys. B 2001, 72, 865–872. [Google Scholar] [CrossRef]
- Neethu, S.; Verma, R.; Kamble, S.S.; Radhakrishnan, J.K.; Krishnapur, P.P.; Padaki, V.C. Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sens. Actuators B Chem. 2014, 192, 70–76. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2021, 277, 107949. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Zhou, H.; Bi, Y. Structural optimization and algorithm design for temperature control system of mid-infrared diode laser. Optik 2020, 207, 163854. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, Z.-K.; Zhang, Y.; Hu, T.; Wang, C.-X.; Wu, Z.-Y.; Guo, Q.-Q.; Chang, Y.; Yang, X.-D. High accuracy temperature control system of DBR laser based on ADN8834. Chin. J. Liq. Cryst. Disp. 2023, 38, 609–616. [Google Scholar] [CrossRef]
- Gomółka, G.; Pysz, D.; Buczyński, R.; Nikodem, M. Wavelength modulation spectroscopy of oxygen inside anti-resonant hollow-core fiber-based gas cell. Opt. Laser Technol. 2024, 170, 110323. [Google Scholar] [CrossRef]
- Chang, J.; He, Q.; Li, J.; Feng, Q. Oxygen detection system based on TDLAS–WMS and a compact multipass gas cell. Microw. Opt. Technol. Lett. 2022, 65, 1141–1145. [Google Scholar] [CrossRef]
- Wang, R.; He, Y.; Qiao, S.; Yang, S.; Ma, Y. Highly sensitive detection of oxygen based on light-induced thermoelastic spectroscopy with a high power diode laser. Infrared Phys. Technol. 2024, 136, 105118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yuan, K.; Yu, Z.; Zhang, Y.; Liu, X.; Lv, T. On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS. Sensors 2025, 25, 4027. https://doi.org/10.3390/s25134027
Zhang Y, Yuan K, Yu Z, Zhang Y, Liu X, Lv T. On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS. Sensors. 2025; 25(13):4027. https://doi.org/10.3390/s25134027
Chicago/Turabian StyleZhang, Yanfei, Kaiping Yuan, Zhaoan Yu, Yunhan Zhang, Xin Liu, and Tieliang Lv. 2025. "On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS" Sensors 25, no. 13: 4027. https://doi.org/10.3390/s25134027
APA StyleZhang, Y., Yuan, K., Yu, Z., Zhang, Y., Liu, X., & Lv, T. (2025). On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS. Sensors, 25(13), 4027. https://doi.org/10.3390/s25134027