Research on the Monitoring Method of the Refuse Intake Status of a Garbage Sweeper That Is Based on the Synergy of a Wind Speed Sensor and an Ultrasonic Sensor
Abstract
1. Introduction
1.1. Investigation of Overflow Monitoring Technology
1.2. Technology Research for the Monitoring of Dust Extraction Duct Blockage
2. Architecture of the System
3. Detailed Technical Information
3.1. Ultrasonic Sensors’ Technical Specifications
3.1.1. Technical Parameters and Design of Ultrasonic Transducers
3.1.2. Data Processing for Ultrasonic Sensors
3.2. Technical Specifications for Wind Speed Sensors
3.2.1. Technical Parameters and Wind Speed Sensor Design
3.2.2. Data Processing for Wind Speed Sensors
4. Results of the Experiment
4.1. Experiment with Monitoring Overflow
4.2. Experiments to Monitor the Obstruction of Dust Extraction Ducts
5. Conclusions and Discussion
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ToF | Time of Flight |
f | Frequency |
t | Sound wave round-trip time |
c | The speed of sound waves in air |
d | Distance between sensor and garbage surface |
T | Ambient temperature |
c0 | Speed of sound at reference temperature |
K | Temperature coefficient |
V | Echo signal amplitude |
P0 | Initial transmit power |
α | Air attenuation coefficient |
θ | The tilt angle of the debris surface |
EKF | Extended Kalman Filter |
SG | Savitzky–Golay |
dmin | The ultrasonic sensor’s minimum measuring distance |
IQR | Dynamic IQR-based Anomaly Detection |
cj | Precomputed convolution coefficient |
da | Sliding average |
tl | System lock time |
n | Impeller speed |
N | Number of pulses generated per impeller revolution |
L | The effective wind range corresponding to each revolution of the impeller |
k | Calibration coefficient |
La | Sliding window length |
va | Sliding window average wind speed |
vn | Minimum wind speed in the smooth state of the pipeline |
vp | Minimum wind speed in the partially blocked state |
RMS | Smoothness |
σ | Standard deviation |
η | Impulse noise suppression rate |
N0 | The number of bursty deviations in the original signal |
N | The number of residual anomalies following algorithmic processing |
References
- Cerasi, I.R. The Potential of Autonomous and Connected Sweepers for Smart and Sustainable Cities. Int. J. Transp. Dev. Integr. 2022, 6, 37–57. [Google Scholar] [CrossRef]
- Donati, L.; Fontanini, T.; Tagliaferri, F.; Prati, A. An Energy Saving Road Sweeper Using Deep Vision for Garbage Detection. Appl. Sci. 2020, 10, 8146. [Google Scholar] [CrossRef]
- Liu, Y.; Ping, P.; Shi, Q.; Chen, H.; Yao, Q.; Luo, J. Research on the Cleaning Method of Unmanned Sweeper Based on Target Distribution Situation Analysis. Appl. Sci. 2023, 13, 12544. [Google Scholar] [CrossRef]
- Saukenova, I.; Oliskevych, M.; Taran, I.; Toktamyssova, A.; Aliakbarkyzy, D.; Pelo, R. Optimization of schedules for early garbage collection and disposal in the megapolis. East.-Eur. J. Enterp. Technol. 2022, 1, 13–23. [Google Scholar] [CrossRef]
- Shoaib, D.M.; Ahmed, T.; Tabassum, K.F.; Hasan, M.; Sharior, F.; Rahman, M.; Farah, M.; Rahman, M.A.; Ahmed, A.; Tidwell, J.B.; et al. Evaluation of occupational health and safety intervention for the waste and sanitation workers in Bangladesh during COVID-19. Int. J. Hyg. Environ. Health 2024, 255, 114288. [Google Scholar] [CrossRef]
- Wang, L. GPRS-based intelligent rubbish overflow alarm system design. Mob. Commun. 2015, 39, 82–85. [Google Scholar]
- Li, P.; Ge, F. Deep learning based method for overflowing bin detection. Jiangsu Commun. 2024, 40, 70–77. [Google Scholar]
- Wang, F. Reflections on BaseLine and Business Metrics Design for Bin Overflow Detection. Commun. World 2024, 31, 163–165. [Google Scholar]
- Vieira, M.; Matos-Carvalho, J.P.; Correia, S.D.; Tavares, R.M. IoT Based Targeting System-Airsoft Use-Case. In Proceedings of the 2022 International Young Engineers Forum (YEF-ECE), Caparica, Portugal, 1 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Su, M.X.; Cai, X.S. Effects of Material Viscosity on Particle Sizing by Ultrasonic Attenuation Spectroscopy. Procedia Eng. 2015, 102, 256–264. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Jia, W.; Hu, X.; Song, S.; Yang, F. Blockage detection techniques for natural gas pipelines: A review. Gas Sci. Eng. 2024, 122, 205187. [Google Scholar] [CrossRef]
- Ren, L.; Jiang, T.; Jia, Z.-g.; Li, D.-s.; Yuan, C.-l.; Li, H.-n. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement 2018, 122, 57–65. [Google Scholar] [CrossRef]
- Qiu, Z.; Lu, Y.; Qiu, Z. Review of Ultrasonic Ranging Methods and Their Current Challenges. Micromachines 2022, 13, 520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B. Research on Target Localization System Based on Ultrasonic Sensor Array. Master’s Thesis, Jilin University, Changchun, China, 2024. [Google Scholar]
- Zhang, X. Research on the Optimization of the Installation Positions of Ultra-high Frequency Sensors and Ultrasonic Sensors for Transformers. Master’s Thesis, North China Electric Power University, Beijing, China, 2023. [Google Scholar] [CrossRef]
- Ferguson, A.S.; Mulholland, A.J.; Tant, K.M.M.; Foondun, M. Ultrasonic wave propagation in randomly layered heterogeneous media. Wave Motion 2023, 120, 103138. [Google Scholar] [CrossRef]
- Kim, D.; Yang, S.; Lee, S. Rigid Body Inertia Estimation Using Extended Kalman and Savitzky–Golay Filters. Math. Probl. Eng. 2016, 2016, 2962671. [Google Scholar] [CrossRef]
- Vaishali, A.; Ramakrishnan, R.; Subasini, A. Weather prediction model using Savitzky-Golay and Kalman filters. Procedia Comput. Sci. 2019, 165, 449–455. [Google Scholar] [CrossRef]
- Zeng, K.; Wu, M.; Lu, C.; Yang, X.; Ma, Z. Prediction of Rate of Penetration Using Gaussian Process Regression and Bayesian Optimization for Drilling Process. In Proceedings of the 11th international Symposium on Computational intelligence and industrial Applications and the 15th china-Japan International Workshop on Information Technology and Control Applications (ISClA&ITCA 2024), Beijing, China, 1–5 November 2024. [Google Scholar]
- Mahardhika, M.A.S.; Putrada, A.G.; Abdurohman, M. Improving indoor positioning systems accuracy in closed buildings with kalman filter and feedback filter. In Proceedings of the 2020 Fifth International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 3–4 November 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Li, J.; Akagi, M. A noise reduction system based on hybrid noise estimation technique and post-filtering in arbitrary noise environments. Speech Commun. 2006, 48, 111–126. [Google Scholar] [CrossRef]
- Benson, V.; Donges, J.F.; Boers, N.; Hirota, M.; Morr, A.; Staal, A.; Vollmer, J.; Wunderling, N. Measuring tropical rainforest resilience under non-Gaussian disturbances. Environ. Res. Lett. 2024, 19, 024029. [Google Scholar] [CrossRef]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef]
- Khodaparast, J. A Review of Dynamic Phasor Estimation by Non-Linear Kalman Filters. IEEE Access 2022, 10, 11090–11109. [Google Scholar] [CrossRef]
- Arcile, J.; André, É. Timed Automata as a Formalism for Expressing Security: A Survey on Theory and Practice. ACM Comput. Surv. 2022, 55, 1–36. [Google Scholar] [CrossRef]
- Afandizadeh Zargari, A.H.; Aqajari, S.A.H.; Khodabandeh, H.; Rahmani, A.; Kurdahi, F. An Accurate Non-accelerometer-based PPG Motion Artifact Removal Technique using CycleGAN. ACM Trans. Comput. Healthc. 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Ma, K.; Liu, Z.; Chen, C.L.P. Neural Adaptive Self-Triggered Control for Uncertain Nonlinear Systems With Input Hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6206–6214. [Google Scholar] [CrossRef] [PubMed]
- Sharif Khodaei, Z.; Aliabadi, M.H. A Multi-Level Decision Fusion Strategy for Condition Based Maintenance of Composite Structures. Materials 2016, 9, 790. [Google Scholar] [CrossRef] [PubMed]
Algorithmic Module | Noise Standard Deviation (mm) | Impulse Noise Rejection (%) |
---|---|---|
raw data | 18.7 | 0.0 |
IQR | 13.1 | 68.2 |
SG | 4.2 | 23.5 |
Kalman | 2.3 | 41.7 |
IQR + SG | 7.5 | 72.8 |
SG + Kalman | 3.6 | 58.3 |
IQR + Kalman | 4.8 | 89.1 |
IQR → SG → Kalman | 2.1 | 98.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zeng, Q.; Chen, Z.; Zhang, Y.; Yang, H. Research on the Monitoring Method of the Refuse Intake Status of a Garbage Sweeper That Is Based on the Synergy of a Wind Speed Sensor and an Ultrasonic Sensor. Sensors 2025, 25, 4010. https://doi.org/10.3390/s25134010
Chen Z, Zeng Q, Chen Z, Zhang Y, Yang H. Research on the Monitoring Method of the Refuse Intake Status of a Garbage Sweeper That Is Based on the Synergy of a Wind Speed Sensor and an Ultrasonic Sensor. Sensors. 2025; 25(13):4010. https://doi.org/10.3390/s25134010
Chicago/Turabian StyleChen, Zihua, Qingbing Zeng, Zhongwen Chen, Yixiao Zhang, and Heng Yang. 2025. "Research on the Monitoring Method of the Refuse Intake Status of a Garbage Sweeper That Is Based on the Synergy of a Wind Speed Sensor and an Ultrasonic Sensor" Sensors 25, no. 13: 4010. https://doi.org/10.3390/s25134010
APA StyleChen, Z., Zeng, Q., Chen, Z., Zhang, Y., & Yang, H. (2025). Research on the Monitoring Method of the Refuse Intake Status of a Garbage Sweeper That Is Based on the Synergy of a Wind Speed Sensor and an Ultrasonic Sensor. Sensors, 25(13), 4010. https://doi.org/10.3390/s25134010