Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of PANI/WS2 Sensing Films
2.3. Characterization
2.4. Design and Fabrication of Sensor Structure and Construction of Gas-Sensing Test Platform
3. Results and Discussion
3.1. Characterization of Composite Materials
3.2. Sensor Performance Testing
3.3. NH3 Sensing Mechanism of PANI/WS2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770. [Google Scholar] [CrossRef] [PubMed]
- Hadano, F.S.; Gavim, A.E.X.; Stefanelo, J.C.; Gusso, S.L.; Macedo, A.G.; Rodrigues, P.C.; Yusoff, A.R.b.M.; Schneider, F.K.; de Deus, J.F.; da Silva, W.J. NH3 sensor based on rGO-PANI composite with improved sensitivity. Sensors 2021, 21, 4947. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Balamurugan, C.; Lee, D.W. A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 2014, 192, 414–422. [Google Scholar] [CrossRef]
- Wu, G.; Du, H.; Cha, Y.L.; Lee, D.; Kim, W.; Feyzbar-Khalkhali-Nejad, F.; Oh, T.-S.; Zhang, X.; Kim, D.-J. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sens. Actuators B 2023, 375, 132858. [Google Scholar] [CrossRef]
- Liu, L.; Fei, T.; Guan, X.; Lin, X.; Zhao, H.; Zhang, T. Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sens. Actuators B 2020, 320, 128318. [Google Scholar] [CrossRef]
- Milani Moghaddam, H.; Malkeshi, H. Self-assembly synthesis and ammonia gas-sensing properties of ZnO/Polythiophene nanofibers. J. Mater. Sci. Mater. Electron. 2016, 27, 8807–8815. [Google Scholar] [CrossRef]
- Jia, X.-S.; Tang, C.-C.; Yan, X.; Yu, G.-F.; Li, J.-T.; Zhang, H.-D.; Li, J.-J.; Gu, C.-Z.; Long, Y.-Z. Flexible polyaniline/poly(methyl methacrylate) composite fibers via electrospinning and in situ polymerization for ammonia gas sensing and strain sensing. J. Nanomater. 2016, 2016, 102828. [Google Scholar] [CrossRef]
- Bittencourt, J.C.; de Santana Gois, B.H.; Rodrigues de Oliveira, V.J.; da Silva Agostini, D.L.; de Almeida Olivati, C. Gas sensor for ammonia detection based on poly(vinyl alcohol) and polyaniline electrospun. J. Appl. Polym. Sci. 2019, 136, 47288. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, W.; Lv, D.; Chen, W.; Song, W.; Tan, R. An enhanced flexible room temperature ammonia gas sensor based on GP-PANI/PVDF multi-hierarchical nanocomposite film. Sens. Actuators B 2021, 334, 129630. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Van Toan, N.; Hung, C.M.; Hoa, N.D.; Van Duy, N.; Thi Thanh Le, D.; Thi Thu Hoa, N.; Viet, N.N.; Phuoc, P.H.; Van Hieu, N. Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. J. Hazard. Mater. 2021, 412, 125181. [Google Scholar] [CrossRef] [PubMed]
- Timmer, B.; Olthuis, W.; van den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhou, Y.; Zhao, L.; Yan, X.; Liu, F.; Lu, G.; Sun, P. wearable gas sensor based on reticular antimony-doped SnO2/PANI nanocomposite realizing intelligent detection of ammonia within a wide range of humidity. ACS Sens. 2023, 8, 4132–4142. [Google Scholar] [CrossRef]
- Tanguy, N.R.; Thompson, M.; Yan, N. A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B 2018, 257, 1044–1064. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Xiao, Y.; Chen, T.; Xiao, X.; Wang, Y. Pt/MoS2/polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection. ACS Appl. Mater. Interfaces 2023, 15, 9604–9617. [Google Scholar] [CrossRef]
- Wan, P.; Wen, X.; Sun, C.; Chandran, B.K.; Zhang, H.; Sun, X.; Chen, X. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 2015, 11, 5409–5415. [Google Scholar] [CrossRef]
- Khuspe, G.D.; Navale, S.T.; Bandgar, D.K.; Sakhare, R.D.; Chougule, M.A.; Patil, V.B. SnO2 nanoparticles-modified polyaniline films as highly selective, sensitive, reproducible and stable ammonia sensors. Electron. Mater. Lett. 2014, 10, 191–197. [Google Scholar] [CrossRef]
- Ouyang, C.; Chen, Y.; Qin, Z.; Zeng, D.; Zhang, J.; Wang, H.; Xie, C. Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci. 2018, 455, 45–52. [Google Scholar] [CrossRef]
- Qin, Z.; Song, X.; Wang, J.; Li, X.; Wu, C.; Wang, X.; Yin, X.; Zeng, D. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl. Surf. Sci. 2022, 573, 151535. [Google Scholar] [CrossRef]
- Liang, K.; Yin, M.; Ma, D.; Fan, Y.; Li, Z. Facile preparation and photocatalytic hydrogen production of WS2 and its composites. Int. J. Hydrogen Energy 2022, 47, 38622–38634. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Fu, Y.; Wang, Q. Gas-sensitive characteristics of graphene composite tungsten disulfide to ammonia. Sensors 2022, 22, 8672. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J. Highly selective NH3 sensor based on MoS2/WS2 heterojunction. Nanomaterials 2023, 13, 1835. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Saini, R.; Gupta, G.; Late, D.J. Room-temperature highly sensitive and selective NH3 gas sensor using vertically aligned WS2 nanosheets. Nanotechnology 2023, 34, 045704. [Google Scholar] [CrossRef]
- Ko, K.Y.; Song, J.G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C.W.; Lee, K.; Koo, J.; Lee, H.; Kim, J.; et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Zhang, D.; Fan, X.; Jin, Y.; Guo, L. Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sens. Actuators B 2020, 322, 128615. [Google Scholar] [CrossRef]
- Xu, W.; Kozawa, D.; Zhou, Y.; Wang, Y.; Sheng, Y.; Jiang, T.; Strano, M.S.; Warner, J.H. Controlling photoluminescence enhancement and energy transfer in WS2:hBN:WS2 vertical stacks by precise interlayer distances. Small 2020, 16, e1905985. [Google Scholar] [CrossRef]
- Konwer, S.; Guha, A.K.; Dolui, S.K. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J. Mater. Sci. 2013, 48, 1729–1739. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Wang, S.; Wu, Z.; Zhang, Z. Moisture-resistant and highly selective NH3 sensor based on CdS/WS2 composite heterojunction. Langmuir 2023, 39, 10352–10366. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; Zhao, L.; Wang, J.; Liu, F.; You, R.; He, J.; Wang, C.; Yan, X.; et al. Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device. Sens. Actuators B 2019, 289, 252–259. [Google Scholar] [CrossRef]
- Khuspe, G.D.; Bandgar, D.K.; Sen, S.; Patil, V.B. Fussy nanofibrous network of polyaniline (PANi) for NH3 detection. Synth. Met. 2012, 162, 1822–1827. [Google Scholar] [CrossRef]
- He, M.; Xie, L.; Luo, G.; Li, Z.; Wright, J.; Zhu, Z. Flexible fabric gas sensors based on PANI/WO3 p-n heterojunction for high performance NH3 detection at room temperature. Sci. China Mater. 2020, 63, 2028–2039. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, J.; Liu, J.; Li, G.; Qiao, Y.; Zhang, X.; Gao, J.; Lu, H. PANI/Ti3C2Tx composite nanofiber-based flexible conductometric sensor for the detection of NH3 at room temperature. Sens. Actuators B 2023, 392, 134128. [Google Scholar] [CrossRef]
- Ma, J.; Fan, H.; Li, Z.; Jia, Y.; Yadav, A.K.; Dong, G.; Wang, W.; Dong, W.; Wang, S. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens. Actuators B 2021, 334, 129677. [Google Scholar] [CrossRef]
- Luo, G.; Xie, L.; He, M.; Jaisutti, R.; Zhu, Z. Fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH3 detection at room temperature. Nanotechnology 2021, 32, 305501. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Yang, Z.; He, J.; Wang, J.; Zhao, L.; Lu, H.; Tian, T.; Liu, F.; Sun, P.; et al. Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sens. Actuators B 2018, 273, 726–734. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Qiu, C.; Jia, P.; An, F.; Zhou, L.; Zhu, L.; Zhang, D. Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator. Chem. Eng. J. 2024, 496, 154226. [Google Scholar] [CrossRef]
Material | Detection Limit | Temperature | Concentration | Response | Response/Recovery Time | Reference |
---|---|---|---|---|---|---|
PANI | RT | 100 ppm | 96% | 122 s/1235 s | [32] | |
PANI/WO3 | 3 ppm | RT | 100 ppm | 150% | 122 s/165 s | [33] |
PANI/Ti3C2TX | 5 ppm | RT | 20 ppm | 55.9% | 40 s/200 s | [34] |
PANI/MWCNTs | 33 ppm | RT | 50 ppm | 117% | 47 s/~ s | [35] |
rGO-PANI | 1 ppm | RT | 100 ppm | 6.2% | 219 s/541 s | [36] |
PANI/WS2 | 0.1 ppm | RT | 100 ppm | 219.1% | 24 s/91 s | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Shi, Y.; Niu, H.; Chen, Q.; Liu, J.; Tang, B.; Zheng, C. Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity. Sensors 2025, 25, 3948. https://doi.org/10.3390/s25133948
Zhao K, Shi Y, Niu H, Chen Q, Liu J, Tang B, Zheng C. Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity. Sensors. 2025; 25(13):3948. https://doi.org/10.3390/s25133948
Chicago/Turabian StyleZhao, Kuo, Yunbo Shi, Haodong Niu, Qinglong Chen, Jinzhou Liu, Bolun Tang, and Canda Zheng. 2025. "Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity" Sensors 25, no. 13: 3948. https://doi.org/10.3390/s25133948
APA StyleZhao, K., Shi, Y., Niu, H., Chen, Q., Liu, J., Tang, B., & Zheng, C. (2025). Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity. Sensors, 25(13), 3948. https://doi.org/10.3390/s25133948