Emerging Frontiers in Robotic Upper-Limb Prostheses: Mechanisms, Materials, Tactile Sensors and Machine Learning-Based EMG Control: A Comprehensive Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
- Core concepts: mechanism, driving, actuation, driven, control, sensor, EMG-based, force feedback, adaptive, bio-inspired, soft robotics, compliant, design, kinematics, biomechanics, ergonomics, rehabilitation, assistive technology, neuroprosthetics, materials, lightweight, 3D printing, soft materials.
- Target applications: upper-limb prosthesis, robotic hand, prosthetic hand, robotic finger, prosthetic finger.
2.2. Inclusion and Exclusion Criteria
- Focused on the design, control, or material selection of upper-limb prostheses or robotic hands/fingers.
- Reported on experimental or numerical analyses relating to biomechanical performance, actuation mechanisms, sensor integration, or EMG-based control strategies.
- Written in English.
- Review papers, meta-analyses, systematic reviews, short letters, unpublished materials, preprints, or surveys.
- Outside the scope of upper-limb prostheses (e.g., focusing solely on lower-limb devices or general robotics without clear application to prosthetics).
- Non-peer-reviewed or missing crucial methodological information.
2.3. Screening and Selection Process
2.4. Data Extraction
2.5. Data Synthesis and Analysis
- State-of-the-art ML algorithms for myoelectric control: including feature extraction and classification techniques for EMG signal processing (e.g., convolutional neural networks (CNNs), transfer learning, incremental learning, and domain adaptation).
- Transmission mechanisms (e.g., tendon-driven, linkage-based, and pneumatic).
- Control strategies (e.g., classical control, fuzzy logic, machine learning, and deep learning).
- Sensor technologies (e.g., tactile, force/torque, and EMG).
- Materials (e.g., structural and socket materials, and soft interface components).
3. State-of-the-Art Machine Learning Methods for Sensor-to-Command Conversion in Upper Limb Robotic Prostheses
3.1. Foundations of EMG-Based Prosthetic Control
3.2. Advanced Machine Learning Strategies and Domain Adaptation
3.3. Low-Cost, User-Oriented Advances in EMG-Based Upper-Limb Prosthesis Control
3.4. Practical Prosthesis Control Assessments, Hybrid Sensing and Rich EMG Data Resources
3.5. Summary
4. Closed-Loop Feedback Control of Upper-Limb Prosthesis
4.1. Traditional Methods
4.2. AI-Enabled Control Methods
5. Transmission Mechanisms
5.1. Tendon Based
5.2. Linkage-Based
5.3. Pneumatic
6. Sensor Technologies for Upper-Limb Prostheses
6.1. Tactile Sensors
6.1.1. Capacitive Tactile Sensors
6.1.2. Piezoresistive Tactile Sensors
6.1.3. Piezoelectric Tactile Sensors
Sensor Type | Materials | Tactile Applications | Unique Features | References |
---|---|---|---|---|
Capacitive Tactile Sensor | Graphene oxide and photoreduced graphene oxide | Moisture detection | All-graphene device enabling noncontact moisture sensing via femtosecond laser direct writing for single-step, eco-friendly fabrication | [112] |
Cellulose nanocrystals modified with tannic acid and silver nanoparticles | Strain detection | Ultra-stretchability exceeding 4000% combined with rapid self-healing and antibacterial properties | [109] | |
Poly(vinylidene fluoride-co-trifluoroethylene) | Pressure detection | Interlocked asymmetric-nanocone arrays (using unpolarized P(VDF-TrFE)) that localize stress at apexes for superior and scalable sensing performance | [113] | |
Carbon Nanotubes combined with Polydimethylsiloxane | Pressure detection | Gradient micro-dome architecture achieving simultaneously high sensitivity and ultrawide linearity, enabling non-overlapping capacitance signals | [125] | |
Multi-wall Carbon Nanotubes combined with Polydimethylsiloxane | Pressure detection | Hierarchical bionic spine–pillar architecture offering heightened low-pressure sensitivity and a broad high-pressure range. | [110] | |
Polydimethylsiloxane | Pressure detection | Biomimetic gray kangaroo leg microstructure, leveraging rapid bending–releasing mechanisms for ultra-high sensitivity and wide pressure range | [126] | |
Piezoresistive Tactile Sensor | Galinstan (liquid metal) embedded in microchannels within a polydimethylsiloxane matrix | Pressure detection | Embedded Wheatstone bridge achieving high sensitivity (sub-50 Pa resolution) and simultaneous temperature self-compensation | [115] |
Piezoresistors combined polymeric packaging | Slippage detection, Force sensing | Slippage detection using raw voltage alone, enabling rapid parallel force and slip estimation | [127] | |
Molybdenum Disulfide | Pressure detection | Active-matrix design with integrated TFTs reducing crosstalk among sensing units while maintaining a wide, linear pressure range | [117] | |
MXene/Single-Walled Carbon Nanotubes/Polyvinylpyrrolidone conductive film | Pressure detection, Voice recognition | Dendritic-lamellar architecture delivering high void space for extreme low-pressure detection (0.69 Pa) and robust structural integrity | [116] | |
Conductive silver threads (resistive sensing), Flexible fluidic tubes (pressure sensing) | Pressure detection, Temperature Sensing | Dual-modality sensing (resistive + fluidic) with decoupled signals for pose and pressure while keeping electronics off-hand | [128] | |
Carbon Nanotubes combined with Polydimethylsiloxane | Strain detection in underwater | Biomimetic swim bladder design integrating sensing and pneumatic actuation for underwater applications with stable morphability | [129] | |
Nanocarbon-polymer composite | Pressure detection | Cross-striped nanocarbon-polymer composite enabling ultra-fast and high-spatial-resolution tactile sensing via screen printing | [130] | |
Velostat (polyethylene-carbon composite material) | Detecting normal and shear forces | Sandwich-structured Velostat sensor supporting both large normal (0–12 N) and shear (0–2.6 N) sensing, incorporated in a glove for real-time wireless feedback | [114] | |
Piezoelectric Tactile Sensor | Lead zirconate titanate | Pressure detection | Integration of PZT on a soft silicone substrate, yielding around 100-fold sensitivity boost and ultra-fast response, while maintaining high stretchability | [120] |
Lead zirconate titanate with ultrathin polyethylene terephthalate | Pressure detection | Self-powered, ultrathin, and wireless design that directly converts mechanical forces into electrical signals without external power sources | [122] | |
Polyvinylidene fluoride nanofibers | Pressure detection, temperature sensing | Single-electrode configuration that maintains a steady-state pressure signal and is area-independent, simplifying microminiaturization and autonomous applications | [131] | |
Piezoelectric film (Au/polyvinylidene fluoride) | Pressure detection, Surface texture identification | Self-powered sensor mimicking fast- and slow-adapting mechanoreceptors, capturing complex tactile stimuli across a broad frequency range without external energy input | [132] | |
Lead-Zirconate-Titanate Nanofibers with Polydimethylsiloxane composite film | Pressure detection | Dual piezoelectric–triboelectric mechanism with micro-frustum arrays that expands the detection range and enhances sensitivity on highly skin-conformal substrates | [124] | |
Polydimethylsiloxane with Polyvinylidene Fluoride | Pressure detection, Slippage detection | Crosstalk-free multilayer row + column electrode design drastically reducing wiring complexity and enabling simultaneous multi-mode stimulus detection | [121] | |
Polyvinylidene fluoride nanofiber with barium titanate particles | Pressure detection | Self-powered electrospun fibers doped with CNT/BTO for high -phase content and a broad detection range, maintaining durability over 12,000 cycles | [123] | |
Polyvinylidene fluoride | Pressure detection, Slip detection | Rigid-in-soft truncated-pyramid design, delivering a 1.7 times sensitivity increase without sacrificing flexibility | [133] | |
Triboelectric Tactile Sensor | Nickel-Fabric Conductive Textile with Polytetrafluoroethylene Film | Pressure detection, Slip detection | Specially distributed electrodes and a gear-based strip to self-power, detect both contact position/area, and continuously track elongation while minimizing environmental noise | [134] |
Polyvinylidene Fluoride | Pressure detection | Concentric dual-mode sensing (triboelectric + inductive) with a shield ring and CNN-based signal fusion, yielding high recognition accuracy | [135] | |
Polydimethylsiloxane with Silver Nanowires | Pressure detection | Simultaneous tactile and touchless detection via triboelectric–liquid metal mechanisms, enabling real-time mode distinction and material identification | [136] | |
Polydimethylsiloxane with Polycaprolactone Nanofiber Membranes | Pressure detection | Self-powered, biodegradable PDMS/PCL nanofiber design offering biocompatibility, scalability, and consistent triboelectric output under varying environmental conditions | [137] | |
poly(vinylidene fluoride-co-hexafluoropropylene), polyvinyl chloride, and titanium dioxide composite film | Pressure detection | Leverages a hydrophobic composite film patterned by sandpaper that provides superior moisture resistance, tripling output performance over bare PVDF–HFP TENGs while retaining flexibility and durability | [138] | |
Organic single crystals (Schiff base 1) | Pressure detection | Flexible organic Schiff base single crystals with reversible ion functionalization enabling noncontact operation, high power density, and exceptional endurance over 10,000 cycles | [139] | |
Electro-chemical Tactile Sensor | Ionic liquid confined in silica microstructures embedded in thermoplastic polyurethane | Pressure detection | Ultra-low-voltage (1 mV) sensor leveraging a double hydrogen-bond network for reversible ion pumping, yielding extraordinarily high sensitivity and minimal initial capacitance | [140] |
Ionic Gel (Poly(vinyl alcohol)) combined with an ionic liquid | Temperature sensing | Completely water-dissolvable, biodegradable temperature sensor featuring optical transparency and mechanical flexibility, facilitating eco-friendly disposal and potential integration with wearable displays | [141] | |
Ferroelectric barium titanate nanoparticles encircled with ionic liquid | Tactile memory retention, Pressure detection | Combined pressure sensing and long-term memory in a single device via ferroelectric-assisted ion dynamics (FAID), enabling low-energy (20.9 pJ) operation without separate sensing and memory modules | [142] | |
Magnetic Tactile Sensor | Titanium Grade 5 | Pressure detection | Contactless magnetic force–torque sensing integrated directly into a standard male pyramid adapter with minimal added mass, preserving off-the-shelf prosthetic compatibility | [143] |
Magnetic microparticles (MQP-15-7; Magnequench) embedded in elastomer | Detecting normal and shear forces | Replaceable skin layer decoupled from the magnetic sensing electronics, combined with self-supervised machine learning for high-resolution, adaptable, and low-cost tactile sensing | [144] | |
MXene composite with Fe3O4 nanoparticles | Proximity sensing, Pressure detection | Dual-mode textile sensor with MXene nanosheets distinguishing proximity from pressure via a clear resistance switching point, all fabricated through a simple coating process | [145] | |
E-fiberglass/epoxy composite with magnet | Force measurement, Bending moment detection | Two-stage magnetic transduction measuring millimeter-scale deflections on curved surfaces for robust, cost-effective load sensing without the need for high-precision machining | [146] | |
Centripetally magnetized flexible magnetic material with NdFeB microparticles | Detecting normal and shear forces | Split-type wireless 3D force decoupling, inspired by biological layering with interchangeable buffer layers to adjust sensitivity and measurement range | [147] | |
Optical Tactile Sensor | Quadrant photodiodes combined with silicone | Force measurement, slip and friction detection | Pinhole camera–based silicone pillars and a quadrant photodiode providing true 3D force/displacement measurement and high-frequency vibration sensing (up to 1000 Hz), each pillar operating independently | [148] |
Organic semiconductors (rubrene/fullerene diodes) | Pressure detection, position sensing | Reversible rubrene/fullerene diodes functioning as both OLEDs and OPDs, enabling simultaneous light emission and detection without performance degradation or hysteresis | [149] | |
Polydimethylsiloxane combined with elastic resin | Pressure detection, Slip detection | Finger-skin-inspired multilayer with optical microfiber ridges, allowing concurrent force and slip detection via wavelet analysis, all fabricated without photolithography or vacuum processes | [150] | |
Multimode fiber embedded in a silicone pad | Spatial position detection, force sensing | Single-fiber multimode interference fused with deep learning, yielding high-resolution tactile classification, easily scalable soft silicone design | [151] | |
Zinc sulfide–calcium zinc oxysulfide mechanoluminescent hybrid | Pressure detection, temperature sensing | Interference-free bimodal sensing avoiding crosstalk or complex signal processing, with real-time visual emission for pressure | [152] | |
Vision-based tactile sensor | Camera | Detecting normal and shear forces | Single-layer depth from defocus technique enabling 3D force reconstruction without multi-layer markers, significantly reducing sensor complexity | [153] |
Camera | Pressure detection | Compact, cost-effective, and open-source optical tactile sensor (DIGIT) featuring modular elastomers, streamlined manufacturing, and custom electronics for large-scale production | [154] | |
Event-Based Camera | Texture classification | Biomimetic neuromorphic design mimicking human glabrous skin, producing spike-based output via an event-based camera to emulate fast-adapting afferents | [155] | |
Camera | Pressure detection | Flexible marker-based vision sensing with tunable PDMS touchpoints, combining high-resolution tactile–visual information in a single, adaptable design | [156] | |
Event-Based Camera | Vibration Sensing, Shear Force and Slip Detection | Event-based camera delivering 1000 Hz sampling at 640 × 480 resolution with sparse data, lowering data rates while maintaining high-speed optical tactile sensing | [157] |
6.1.4. Triboelectric Tactile Sensors
6.1.5. Electro-Chemical Tactile Sensors
6.1.6. Magnetic Tactile Sensors
6.1.7. Optical Tactile Sensors
6.1.8. Vision-Based Tactile Sensors
Sensor Type | Advantages | Disadvantages |
---|---|---|
Capacitive Tactile Sensors | High stretchability | Sensitive to noise |
High sensitivity over broad pressure or strain ranges | Performance saturation under high force or large strain | |
Cost-effective fabrication methods | Potential missed or false detections for sharp/thin objects or at boundary regions | |
Durability over repeated cycles | Susceptibility to moisture and contaminants (dust, sand, dirt) | |
Piezoresistive Tactile Sensors | High sensitivity over a wide pressure range | |
Mechanical flexibility | Hysteresis and viscoelastic effects can delay response or recovery | |
Robustness and durability over repeted cycles | Susceptibility to moisture and contaminants (dust, sand, dirt) | |
Low crosstalk and reliable signal acquisition when employing active-matrix or structured sensor designs | ||
Piezoelectric Tactile Sensors | High sensitivity for detecting subtle pressure changes | Complex fabrication processes |
Rapid response times suited for dynamic measurements | Degradation over extended use | |
Flexible and conformable designs | Insufficient static pressure response, sensitive to dynamic forces | |
Triboelectric Tactile Sensors | Achieves high recognition accuracy | Exhibits baseline offset and drift in triboelectric signals |
High energy efficient | Lacks comprehensive protective measures against contaminants (dust, sand, dirt) | |
Maintains flexible and stretchable structures | Requires multiple grasping cycles or repeated interactions to stabilize triboelectric signal amplitudes | |
Demonstrates robust environmental resilience | ||
Electro-chemical Tactile Sensors | High sensitivity over a broad pressure range | Incomplete dissolution due to copper electrodes |
Ultra-low operating voltage | Vulnerability to high humidity | |
Fast response times | Temperature sensitivity | |
Integrated sensing and memory | Complex and expensive fabrication processes | |
Magnetic Tactile Sensors | High sensitivity and resolution for minimal forces | Susceptibility to Temperature and Alignment |
Capability to capture forces along multiple axes | Hysteresis effects in viscoelastic materials | |
Silicone layers and textile-based designs provide soft or flexible exterior | Cross-talk among measurement axes, requiring careful calibration and modeling | |
Magnetic sensing elements may be affected by nearby fields, bending, or film rotation. | ||
Optical Tactile Sensors | High accuracy and resolution | Alignment and contact sensitivity |
Broad frequency or bandwidth capabilities | Z-axis force estimation can have notably higher errors compared to X and Y axes | |
Silicone or elastomeric materials provides flexible and compliant structures | Accuracy degrades over time, requiring recalibration or model updates | |
Possible wear and tear | ||
Vision-based Tactile Sensors | High resolution and information (texture and deformation) capacity | Sensitivity to environmental factors (ambient light, reflections) |
Open-source designs and modular structures | Trade-off between durability and sensitivity | |
Multimodal integration (tactile + visual data) for comprehensive force measurement and control | Bulky structure |
6.2. Proprioceptive and Environmental Sensors
6.2.1. Position (Proprioceptive) Sensors
6.2.2. Inertial Measurement Unit Sensors
6.2.3. Temperature Sensors
7. Material Selection in Upper-Limb Prosthetics: Balancing Strength, Comfort, and Function
7.1. Structural and Frame Materials
7.2. Soft Interface Materials
7.3. Socket Materials
7.4. Functional Components Materials
7.5. Cosmetic Covers
7.6. Sensors and Electronics Materials (For Myoelectric Prosthetics)
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, F.M.; Ahmed, S.A.; Ullah, S.; Ghazal, H.; Nawaz, S.; Alzahrani, A.S. The patterns of acquired upper and lower extremity amputation at a Tertiary Centre in Saudi Arabia. Cureus 2022, 14, e24026. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, P.J.; McFarland, L.V.; Smith, D.G.; Reiber, G.E. Combat-incurred bilateral transfemoral limb loss: A comparison of the Vietnam War to the wars in Afghanistan and Iraq. J. Trauma Acute Care Surg. 2012, 73, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- ISBN 978-92-4-151248-0; Standards for Prosthetics and Orthotics. World Health Organization: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/9789241512480 (accessed on 4 May 2025).
- Tacca, N.; Dunlap, C.; Donegan, S.P.; Hardin, J.O.; Meyers, E.; Darrow, M.J.; Colachis IV, S.; Gillman, A.; Friedenberg, D.A. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation. Sci. Rep. 2024, 14, 18564. [Google Scholar] [CrossRef]
- Ahkami, B.; Ahmed, K.; Thesleff, A.; Hargrove, L.; Ortiz-Catalan, M. Electromyography-based control of lower limb prostheses: A systematic review. IEEE Trans. Med. Robot. Bionics 2023, 5, 547–562. [Google Scholar] [CrossRef]
- Tetteh, S. Materials for Facial Prostheses in Resource-Limited Countries. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2019. [Google Scholar]
- Zhou, H.; Alici, G. Non-Invasive Human-Machine Interface (HMI) Systems With Hybrid On-Body Sensors for Controlling Upper-Limb Prosthesis: A Review. IEEE Sens. J. 2022, 22, 10292–10307. [Google Scholar] [CrossRef]
- Mahmood, N.T.; Al-Muifraje, M.H.; Saeed, T.R.; Kaittan, A.H. Upper Prosthetic Design based on EMG: A Systematic Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 978, 012025. [Google Scholar] [CrossRef]
- Hari M, A.; Rajan, L. Advanced Materials and Technologies for Touch Sensing in Prosthetic Limbs. IEEE Trans. Nanobiosci. 2021, 20, 256–270. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Monticeli, F.M.; Agnol, L.D. A Review on Polymers for Biomedical Applications on Hard and Soft Tissues and Prosthetic Limbs. Polymers 2023, 15, 4034. [Google Scholar] [CrossRef]
- Kashef, S.R.; Amini, S.; Akbarzadeh, A. Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria. Mech. Mach. Theory 2020, 145, 103677. [Google Scholar] [CrossRef]
- Luu, D.K.; Nguyen, A.T.; Jiang, M.; Drealan, M.W.; Xu, J.; Wu, T.; Tam, W.k.; Zhao, W.; Lim, B.Z.H.; Overstreet, C.K.; et al. Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface. IEEE Trans. Biomed. Eng. 2022, 69, 3051–3063. [Google Scholar] [CrossRef]
- Yu, G.; Deng, Z.; Bao, Z.; Zhang, Y.; He, B. Gesture Classification in Electromyography Signals for Real-Time Prosthetic Hand Control Using a Convolutional Neural Network-Enhanced Channel Attention Model. Bioengineering 2023, 10, 1324. [Google Scholar] [CrossRef]
- Godoy, R.V.; Dwivedi, A.; Guan, B.; Turner, A.; Shieff, D.; Liarokapis, M. On EMG based dexterous robotic telemanipulation: Assessing machine learning techniques, feature extraction methods, and shared control schemes. IEEE Access 2022, 10, 99661–99675. [Google Scholar] [CrossRef]
- Campbell, E.; Eddy, E.; Bateman, S.; Côté-Allard, U.; Scheme, E. Context-informed incremental learning improves both the performance and resilience of myoelectric control. J. Neuroeng. Rehabil. 2024, 21, 70. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhang, R.; Chen, J. Fall-related gait pattern recognition using transfer learning for cross-subject generalization. Neurocomputing 2024, 494, 157–169. [Google Scholar]
- Hazar, Y.; Ertuğrul, O.F. Developing a real-time hand exoskeleton system that controlled by a hand gesture recognition system via wireless sensors. Biomed. Signal Process. Control 2025, 99, 106886. [Google Scholar] [CrossRef]
- Gozzi, N.; Malandri, L.; Mercorio, F.; Pedrocchi, A. XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification. Knowl.-Based Syst. 2022, 240, 108053. [Google Scholar] [CrossRef]
- Jarrah, Y.A.; Asogbon, M.G.; Samuel, O.W.; Wang, X.; Zhu, M.; Nsugbe, E.; Chen, S.; Li, G. High-density surface EMG signal quality enhancement via optimized filtering technique for amputees’ motion intent characterization towards intuitive prostheses control. Biomed. Signal Process. Control 2022, 74, 103497. [Google Scholar] [CrossRef]
- Quesada, L.; Verdel, D.; Bruneau, O.; Berret, B.; Amorim, M.A.; Vignais, N. EMG feature extraction and muscle selection for continuous upper limb movement regression. Biomed. Signal Process. Control 2025, 103, 107323. [Google Scholar] [CrossRef]
- Davarinia, F.; Maleki, A. EMG and SSVEP-based bimodal estimation of elbow angle trajectory. Neuroscience 2024, 562, 1–9. [Google Scholar] [CrossRef]
- D’Accolti, D.; Dejanovic, K.; Cappello, L.; Mastinu, E.; Ortiz-Catalan, M.; Cipriani, C. Decoding of multiple wrist and hand movements using a transient EMG classifier. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Potenza, D.C.; Grazioso, A.; Gaetani, F.; Mantriota, G.; Reina, G. A smart demonstration unit for upper-limb myoelectric prostheses. Smart Health 2024, 32, 100481. [Google Scholar] [CrossRef]
- Trajdos, P. A noise-tolerant dual multi-classifier system with fuzzy model applied to the sEMG-based control of a bionic upper limb prosthesis. Biomed. Signal Process. Control 2025, 104, 107441. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Boyd, W.J.; Martinez-Luna, C.; Dai, C.; Wang, H.; Wang, H.; Huang, X.; Farrell, T.R.; Clancy, E.A. Virtual regression-based myoelectric hand-wrist prosthesis control and electrode site selection using no force feedback. Biomed. Signal Process. Control 2023, 82, 104602. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, N.; Katiyar, A.K.; Dubey, S.K.; Sharma, S. Magnetic-based detection of muscular contraction for controlling hand prosthesis. Sens. Actuators Phys. 2022, 344, 113709. [Google Scholar] [CrossRef]
- López, L.I.B.; Ferri, F.M.; Zea, J.; Caraguay, Á.L.V.; Benalcázar, M.E. CNN-LSTM and post-processing for EMG-based hand gesture recognition. Intell. Syst. Appl. 2024, 22, 200352. [Google Scholar]
- Lee, D.; You, D.; Cho, G.; Lee, H.; Shin, E.; Choi, T.; Kim, S.; Lee, S.; Nam, W. EMG-based hand gesture classifier robust to daily variation: Recursive domain adversarial neural network with data synthesis. Biomed. Signal Process. Control 2024, 88, 105600. [Google Scholar] [CrossRef]
- Trajdos, P.; Kurzynski, M. Application of context-dependent interpretation of biosignals recognition to control a bionic multifunctional hand prosthesis. Biocybern. Biomed. Eng. 2024, 44, 161–182. [Google Scholar] [CrossRef]
- Cutipa-Puma, D.R.; Coaguila-Quispe, C.G.; Yanyachi, P.R. A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX 2023, 14, e00439. [Google Scholar] [CrossRef]
- Kim, H.; Miyakoshi, M.; Kim, Y.; Stapornchaisit, S.; Yoshimura, N.; Koike, Y. Electroencephalography reflects user satisfaction in controlling robot hand through electromyographic signals. Sensors 2022, 23, 277. [Google Scholar] [CrossRef]
- Calado, A.; Roselli, P.; Gruppioni, E.; Marinelli, A.; Bellingegni, A.D.; Boccardo, N.; Saggio, G. A geometric algebra-based approach for myoelectric pattern recognition control and faster prosthesis recalibration. Expert Syst. Appl. 2024, 124373. [Google Scholar] [CrossRef]
- Wang, H.; Bardizbanian, B.; Zhu, Z.; Wang, H.; Dai, C.; Clancy, E.A. Evaluation of generic EMG-Torque models across two Upper-Limb joints. J. Electromyogr. Kinesiol. 2024, 75, 102864. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, A.; Canepa, M.; Di Domenico, D.; Gruppioni, E.; Laffranchi, M.; De Michieli, L.; Chiappalone, M.; Semprini, M.; Boccardo, N. A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis. Neurocomputing 2024, 569, 127123. [Google Scholar] [CrossRef]
- Unanyan, N.N.; Belov, A.A. Design of upper limb prosthesis using real-time motion detection method based on EMG signal processing. Biomed. Signal Process. Control 2021, 70, 103062. [Google Scholar] [CrossRef]
- Park, J.; Zahabi, M.; Huang, H.; Benden, M. A novel approach for predicting usability of upper limb prostheses. Appl. Ergon. 2024, 120, 104344. [Google Scholar] [CrossRef]
- Fink, C.; Diamond, Y. Prosthesis Options and Management in Upper Extremity Amputation. Oper. Tech. Orthop. 2023, 33, 101061. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, X.; Li, W.; Yu, H. Improving the robustness and adaptability of sEMG-based pattern recognition using deep domain adaptation. IEEE J. Biomed. Health Inform. 2022, 26, 5450–5460. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qiu, S.; He, H. Time-distributed attention network for EEG-based motor imagery decoding from the same limb. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 496–508. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, Y.; Kim, P.; Jeong, S.; Kim, K.S. The MSC prosthetic hand: Rapid, powerful, and intuitive. IEEE Robot. Autom. Lett. 2022, 7, 3170–3177. [Google Scholar] [CrossRef]
- Rajapriya, R.; Rajeswari, K.; Joshi, D.; Thiruvengadam, S. Forearm orientation and contraction force independent method for EMG-based myoelectric prosthetic hand. IEEE Sens. J. 2020, 21, 6623–6633. [Google Scholar] [CrossRef]
- Cha, H.; An, S.; Choi, S.; Yang, S.; Park, S.; Park, S. Study on intention recognition and sensory feedback: Control of robotic prosthetic hand through EMG classification and proprioceptive feedback using rule-based haptic device. IEEE Trans. Haptics 2022, 15, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Brown, J.D. Dual-Modality Haptic Feedback Improves Dexterous Task Execution With Virtual EMG-Controlled Gripper. IEEE Trans. Haptics 2023, 16, 816–825. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Hou, J.; Li, G.; Sun, B.; Lu, P. Deep learning for electromyographic lower-limb motion signal classification using residual learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2078–2089. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.; Lee, I.C.; Yin, J.; Huang, H. An Efficient Framework for Personalizing EMG-Driven Musculoskeletal Models Based on Reinforcement Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 4174–4185. [Google Scholar] [CrossRef] [PubMed]
- Johansen, D.; Popović, D.B.; Dosen, S.; Struijk, L.N.A. Hybrid tongue-myoelectric control improves functional use of a robotic hand prosthesis. IEEE Trans. Biomed. Eng. 2021, 68, 2011–2020. [Google Scholar] [CrossRef]
- Liu, Y.; Berman, J.; Dodson, A.; Park, J.; Zahabi, M.; Huang, H.; Ruiz, J.; Kaber, D.B. Human-Centered Evaluation of EMG-Based Upper-Limb Prosthetic Control Modes. IEEE Trans.-Hum.-Mach. Syst. 2024, 54, 271–281. [Google Scholar] [CrossRef]
- Ariza, J.Á.; Pearce, J.M. Low-cost assistive technologies for disabled people using open-source hardware and software: A systematic literature review. IEEE Access 2022, 10, 124894–124927. [Google Scholar] [CrossRef]
- Gonzalez, M.; Su, H.; Fu, Q. Age-dependent upper limb myoelectric control capability in typically developing children. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1009–1018. [Google Scholar] [CrossRef]
- Pancholi, S.; Joshi, A.M. Advanced energy kernel-based feature extraction scheme for improved EMG-PR-based prosthesis control against force variation. IEEE Trans. Cybern. 2020, 52, 3819–3828. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Xia, H.; Chen, G.; Meng, Q. Cross-modal integration and transfer learning using fuzzy logic techniques for intelligent upper limb prosthesis. IEEE Trans. Fuzzy Syst. 2022, 31, 1267–1280. [Google Scholar] [CrossRef]
- Simon, A.M.; Turner, K.L.; Miller, L.A.; Potter, B.K.; Beachler, M.D.; Dumanian, G.A.; Hargrove, L.J.; Kuiken, T.A. User performance with a transradial multi-articulating hand prosthesis during pattern recognition and direct control home use. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Al-Sharman, A.; Croft, E.; Benabdallah, S.; Ma, L.; Menon, C. GrabMyo: A multi-day dataset of sEMG signals for gesture recognition and biometrics. Sci. Data 2022, 9, 1234. [Google Scholar]
- Liu, Q.; Zhang, W.; He, X.; Sun, H.; Wu, J. Finger movement recognition using high-density electromyography: A multi-gesture dataset for intrinsic and extrinsic muscle analysis. J. Neuroeng. Rehabil. 2023, 20, 89. [Google Scholar]
- D’Accolti, D.; Clemente, F.; Mannini, A.; Mastinu, E.; Ortiz-Catalan, M.; Cipriani, C. Online classification of transient EMG patterns for the control of the wrist and hand in a transradial prosthesis. IEEE Robot. Autom. Lett. 2023, 8, 1045–1052. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, S. A low-cost system to control prehension force of a custom-made myoelectric hand prosthesis. Res. Biomed. Eng. 2020, 36, 237–247. [Google Scholar] [CrossRef]
- Mio, R.; Villegas, B.; Ccorimanya, L.; Flores, K.M.; Salazar, G.; Elías, D. Development and assessment of a powered 3D-printed prosthetic hand for transmetacarpal amputees. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 22–24 April 2017; pp. 85–90. [Google Scholar]
- Pradeep, R.; Praveen, L.; Shankpal, P. Implementation of Multiple DOF Bionic Hand for EMG Controlled Schemes. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 5–7 March 2020; pp. 36–40. [Google Scholar]
- Kashiwakura, J.; Alva, P.G.S.; Guerra, I.M.; Bona, C.; Atashzar, S.F.; Farina, D. Task-oriented design of a multi-degree of freedom upper limb prosthesis with integrated myocontrol and sensory feedback. IEEE Trans. Med. Robot. Bionics 2023, 5, 1067–1081. [Google Scholar] [CrossRef]
- Sattar, N.Y.; Syed, U.A.; Muhammad, S.; Kausar, Z. Real-time EMG signal processing with implementation of PID control for upper-limb prosthesis. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 120–125. [Google Scholar]
- Moqadam, S.B.; Delle, K.; Schorling, U.; Asheghabadi, A.S.; Norouzi, F.; Xu, J. Reproducing tactile and proprioception based on the human-in-the-closed-loop conceptual approach. IEEE Access 2023, 11, 41894–41905. [Google Scholar] [CrossRef]
- Piazza, C.; Rossi, M.; Catalano, M.G.; Bicchi, A.; Hargrove, L.J. Evaluation of a simultaneous myoelectric control strategy for a multi-DoF transradial prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2286–2295. [Google Scholar] [CrossRef]
- De la Cruz-Sánchez, B.A.; Arias-Montiel, M.; Lugo-González, E. EMG-controlled hand exoskeleton for assisted bilateral rehabilitation. Biocybern. Biomed. Eng. 2022, 42, 596–614. [Google Scholar] [CrossRef]
- Meng, Q.; Li, Z.; Li, J. An intelligent upper limb prosthesis with crossmodal integration and recognition. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021; pp. 747–752. [Google Scholar]
- Zhang, T.; Jiang, L.; Liu, H. Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1391–1399. [Google Scholar] [CrossRef]
- Krasoulis, A.; Nazarpour, K. Discrete action control for prosthetic digits. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Fortuna, F.; Moura, F.; Soriano, D.; do ABC, S.d.C. Integrating Myo armband for the control of myoelectric upper limb prosthesis. In Proceedings of the Proceedings of the XXV Congresso Brasileiro de Engenharia Biomédica, Foz do Iguaçu, Brasil, 17–20 October 2016. [Google Scholar]
- Zhang, Z.; Han, T.; Pan, J.; Wang, Z. Design of anthropomorphic fingers with biomimetic actuation mechanism. IEEE Robot. Autom. Lett. 2019, 4, 3465–3472. [Google Scholar] [CrossRef]
- Williams, H.E.; Shehata, A.W.; Dawson, M.R.; Scheme, E.; Hebert, J.S.; Pilarski, P.M. Recurrent convolutional neural networks as an approach to position-aware myoelectric prosthesis control. IEEE Trans. Biomed. Eng. 2022, 69, 2243–2255. [Google Scholar] [CrossRef]
- Zandigohar, M.; Han, M.; Sharif, M.; Günay, S.Y.; Furmanek, M.P.; Yarossi, M.; Bonato, P.; Onal, C.; Padır, T.; Erdoğmuş, D.; et al. Multimodal fusion of emg and vision for human grasp intent inference in prosthetic hand control. Front. Robot. AI 2024, 11, 1312554. [Google Scholar] [CrossRef] [PubMed]
- Mohammadreza, E.; Da Fonseca, V.P.; Jiang, X. Investigating the Impact of Training Protocols on Myoelectric Pattern Recognition Control in Upper-Limb Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 1338–1348. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Zhang, P.; Shi, P. Whole-Body Safety-Critical Control Design of an Upper Limb Prosthesis for Vision-Based Manipulation and Grasping. IEEE Trans. Autom. Sci. Eng. 2024, 22, 534–545. [Google Scholar] [CrossRef]
- Suthar, B.; Abdulrahman, Y.; Zweiri, Y. Robotic Fingers: Advancements, Challenges, and Future Directions-A Comprehensive Review. IEEE Access 2024, 12, 110113–110130. [Google Scholar] [CrossRef]
- Ozawa, R.; Kobayashi, H.; Hashirii, K. Analysis, classification, and design of tendon-driven mechanisms. IEEE Trans. Robot. 2013, 30, 396–410. [Google Scholar] [CrossRef]
- Li, C.; Yang, S.; Branson, D.T.; Song, Z.; Sun, T.; Dai, J.S.; Kang, R. A tendon-driven actuator with cantilever initiated variable stiffness used for robotic fingers. Mech. Mach. Theory 2024, 201, 105730. [Google Scholar] [CrossRef]
- Shirafuji, S.; Ota, J. Development of a robotic finger with a branching tendon mechanism and sensing based on the moment-equivalent point. Robot. Auton. Syst. 2020, 129, 103538. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Zhang, M.; Li, M.; Zhang, C.; Jia, J. Design of TCP-actuator-driven, soft-tendon-integrated anthropomorphic dexterous hand: SoroAgilHand-1. Sens. Actuators A Phys. 2024, 378, 115760. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Ren, T.; Hu, Y.; Liu, H.; Lin, S.; Yang, Y.; Li, Y.; Zhou, J. A dual-mode actuator for soft robotic hand. IEEE Robot. Autom. Lett. 2021, 6, 1144–1151. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, G.; Ren, L.; Luo, Z.; Shang, J. An anthropomorphic robotic finger with innate human-finger-like biomechanical advantages Part I: Design, ligamentous joint, and extensor mechanism. IEEE Trans. Robot. 2022, 39, 485–504. [Google Scholar] [CrossRef]
- Chang, M.H.; Kim, D.H.; Kim, S.H.; Lee, Y.; Cho, S.; Park, H.S.; Cho, K.J. Anthropomorphic prosthetic hand inspired by efficient swing mechanics for sports activities. IEEE/ASME Trans. Mechatron. 2021, 27, 1196–1207. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C.; Lin, S.; Li, Y.; Chen, Y. Double-acting soft actuator for Soft Robotic hand: A bellow pumping and contraction approach. Biomimetics 2022, 7, 171. [Google Scholar] [CrossRef]
- Estay, D.; Basoalto, A.; Ardila, J.; Cerda, M.; Barraza, R. Development and implementation of an anthropomorphic underactuated prosthesis with adaptive grip. Machines 2021, 9, 209. [Google Scholar] [CrossRef]
- Min, S.; Yi, S. Development of cable-driven anthropomorphic robot hand. IEEE Robot. Autom. Lett. 2021, 6, 1176–1183. [Google Scholar] [CrossRef]
- Yoon, S.J.; Choi, M.; Jeong, B.; Park, Y.L. Elongatable gripper fingers with integrated stretchable tactile sensors for underactuated grasping and dexterous manipulation. IEEE Trans. Robot. 2022, 38, 2179–2193. [Google Scholar] [CrossRef]
- Li, G.; Liang, X.; Gao, Y.; Su, T.; Liu, Z.; Hou, Z.G. A linkage-driven underactuated robotic hand for adaptive grasping and in-hand manipulation. IEEE Trans. Autom. Sci. Eng. 2023, 21, 3039–3051. [Google Scholar] [CrossRef]
- Wattanasiri, P.; Tangpornprasert, P.; Virulsri, C. Design of multi-grip patterns prosthetic hand with single actuator. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1188–1198. [Google Scholar] [CrossRef]
- Meng, H.; Yang, K.; Zhou, L.; Shi, Y.; Cai, S.; Bao, G. Optimal Design of Linkage-Driven Underactuated Hand for Precise Pinching and Powerful Grasping. IEEE Robot. Autom. Lett. 2024, 9, 3475–3482. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, J.; O’Neill, C.T.; Walsh, C.J.; Wood, R.J.; Ryu, J.H.; Desai, J.P.; Yip, M.C. Robotic artificial muscles: Current progress and future perspectives. IEEE Trans. Robot. 2019, 35, 761–781. [Google Scholar] [CrossRef]
- Pozzi, M.; Malvezzi, M.; Prattichizzo, D.; Salvietti, G. Actuated Palms for Soft Robotic Hands: Review and Perspectives. IEEE/ASME Trans. Mechatron. 2023, 29, 902–912. [Google Scholar] [CrossRef]
- Chen, H.; Ali, M.A.; Wang, Z.; Chen, J.; Ramadan, M.N.; Alkhedher, M. Performance optimizing of pneumatic soft robotic hands using wave-shaped contour actuator. Results Eng. 2025, 25, 103456. [Google Scholar] [CrossRef]
- Liu, S.; Wang, F.; Liu, Z.; Zhang, W.; Tian, Y.; Zhang, D. A two-finger soft-robotic gripper with enveloping and pinching grasping modes. IEEE/ASME Trans. Mechatron. 2020, 26, 146–155. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Chen, Y.; Yang, Z.; He, B.; Li, X.; Xie, J.; Xu, G. An anthropomorphic robotic hand with a soft-rigid hybrid structure and positive-negative pneumatic actuation. IEEE Robot. Autom. Lett. 2023, 8, 4346–4353. [Google Scholar] [CrossRef]
- Mei, D.; Yu, X.; Tang, G.; Liu, S.; Zhao, X.; Zhao, C.; Li, C.; Wang, Y. Blue hand: A novel type of soft anthropomorphic hand based on pneumatic series-parallel mechanism. IEEE Robot. Autom. Lett. 2023, 8, 7615–7622. [Google Scholar] [CrossRef]
- Kim, K.R.; Jeong, S.H.; Kim, P.; Kim, K.S. Design of robot hand with pneumatic dual-mode actuation mechanism powered by chemical gas generation method. IEEE Robot. Autom. Lett. 2018, 3, 4193–4200. [Google Scholar] [CrossRef]
- Nishimura, T.; Shimizu, K.; Nojiri, S.; Tadakuma, K.; Suzuki, Y.; Tsuji, T.; Watanabe, T. Soft robotic hand with finger-bending/friction-reduction switching mechanism through 1-degree-of-freedom flow control. IEEE Robot. Autom. Lett. 2022, 7, 5695–5702. [Google Scholar] [CrossRef]
- Su, M.; Huang, D.; Guan, Y.; Xiang, C.; Zhu, H.; Liu, Z. Soft tactile sensing for object classification and fine grasping adjustment using a pneumatic hand with an inflatable palm. IEEE Trans. Ind. Electron. 2023, 71, 3873–3883. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, B. A two-finger soft gripper based on bistable mechanism. IEEE Robot. Autom. Lett. 2022, 7, 11330–11337. [Google Scholar] [CrossRef]
- Lee, G.; Choi, Y. Bio-inspired tendon-driven finger design with isomorphic ligamentous joint. IEEE Access 2020, 8, 18240–18251. [Google Scholar] [CrossRef]
- Kwon, J.; Bombara, D.; Teeple, C.; Lee, J.; Hoberman, C.; Wood, R.; Werfel, J. Transformable Linkage-Based Gripper for Multi-Mode Grasping and Manipulation. IEEE Robot. Autom. Lett. 2023, 8, 8446–8453. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 2009, 26, 1–20. [Google Scholar] [CrossRef]
- Kappassov, Z.; Baimukashev, D.; Kuanyshuly, Z.; Massalin, Y.; Urazbayev, A.; Varol, H.A. Color-coded fiber-optic tactile sensor for an elastomeric robot skin. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2146–2152. [Google Scholar]
- Alfadhel, A.; Khan, M.A.; Cardoso, S.; Leitao, D.; Kosel, J. A magnetoresistive tactile sensor for harsh environment applications. Sensors 2016, 16, 650. [Google Scholar] [CrossRef]
- Almuslem, A.S.; Shaikh, S.F.; Hussain, M.M. Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 2019, 4, 1900145. [Google Scholar] [CrossRef]
- Li, S.; Li, J. Condition monitoring and diagnosis of power equipment: Review and prospective. High Volt. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Sadiku, M.N.; Akujuobi, C.M. Electrostatic discharge (ESD). IEEE Potentials 2004, 23, 39–41. [Google Scholar] [CrossRef]
- Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074. [Google Scholar] [CrossRef]
- Tavakoli, M.; Lopes, P.; Lourenco, J.; Rocha, R.P.; Giliberto, L.; de Almeida, A.T.; Majidi, C. Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sens. J. 2017, 17, 5669–5677. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Shen, Y.; Tang, L.; Zhang, P.; Wang, Y.; Chen, Y.; Huang, B.; Lu, B. Natural skin-inspired versatile cellulose biomimetic hydrogels. J. Mater. Chem. A 2019, 7, 26442–26455. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Peng, J.; Wang, H.; Chen, D.; Liu, Y.; Yang, L.; Chen, H. Fully soft pressure sensor based on bionic spine–pillar structure for robotics motion monitoring. Soft Robot. 2022, 9, 518–530. [Google Scholar] [CrossRef]
- Ho, D.H.; Song, R.; Sun, Q.; Park, W.H.; Kim, S.Y.; Pang, C.; Kim, D.H.; Kim, S.Y.; Lee, J.; Cho, J.H. Crack-enhanced microfluidic stretchable E-skin sensor. ACS Appl. Mater. Interfaces 2017, 9, 44678–44686. [Google Scholar] [CrossRef]
- An, J.; Le, T.S.D.; Huang, Y.; Zhan, Z.; Li, Y.; Zheng, L.; Huang, W.; Sun, G.; Kim, Y.J. All-graphene-based highly flexible noncontact electronic skin. ACS Appl. Mater. Interfaces 2017, 9, 44593–44601. [Google Scholar] [CrossRef]
- Niu, H.; Gao, S.; Yue, W.; Li, Y.; Zhou, W.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Wang, Y.; Jiang, G. Flexible Three-Dimensional Force Tactile Sensor Based on Velostat Piezoresistive Films. Micromachines 2024, 15, 486. [Google Scholar] [CrossRef]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef]
- Chen, M.; Hu, X.; Li, K.; Sun, J.; Liu, Z.; An, B.; Zhou, X.; Liu, Z. Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 2020, 164, 111–120. [Google Scholar] [CrossRef]
- Park, Y.J.; Sharma, B.K.; Shinde, S.M.; Kim, M.S.; Jang, B.; Kim, J.H.; Ahn, J.H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wang, H.; Yu, X.; Yang, K.; Liu, W.; Nie, S.; Sun, W.; Xie, Z.; Chen, B.; et al. A 1 mm-thick miniatured mobile soft robot with mechanosensation and multimodal locomotion. IEEE Robot. Autom. Lett. 2020, 5, 3291–3298. [Google Scholar] [CrossRef]
- Liang, C.; Sun, J.; Liu, Z.; Tian, G.; Liu, Y.; Zhao, Q.; Yang, D.; Chen, J.; Zhong, B.; Zhu, M.; et al. Wide range strain distributions on the electrode for highly sensitive flexible tactile sensor with low hysteresis. ACS Appl. Mater. Interfaces 2023, 15, 15096–15107. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+ column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817. [Google Scholar] [CrossRef] [PubMed]
- Park, D.Y.; Joe, D.J.; Kim, D.H.; Park, H.; Han, J.H.; Jeong, C.K.; Park, H.; Park, J.G.; Joung, B.; Lee, K.J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Wee, M.G.V.; Chinnappan, A.; Ramakrishna, S. A self-powered piezoelectric nanofibrous membrane as wearable tactile sensor for human body motion monitoring and recognition. Adv. Fiber Mater. 2023, 5, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hou, X.; Cui, M.; Zhang, S.; He, J.; Geng, W.; Mu, J.; Chou, X. Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator. Nano Energy 2019, 64, 103923. [Google Scholar] [CrossRef]
- Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312. [Google Scholar] [CrossRef]
- Hou, M.; Hong, W.; Chen, H.; Zhang, T.; Zhu, X.; Hao, J.; Yin, Z.; Yan, Z.; Li, X.; Zhang, A.; et al. Simple fabrication of high-sensitivity capacitive tactile sensor based on a polydimethylsiloxane dielectric layer using a biomimetic gray kangaroo leg structure. J. Phys. D Appl. Phys. 2024, 57, 215401. [Google Scholar] [CrossRef]
- Romeo, R.A.; Oddo, C.M.; Carrozza, M.C.; Guglielmelli, E.; Zollo, L. Slippage detection with piezoresistive tactile sensors. Sensors 2017, 17, 1844. [Google Scholar] [CrossRef]
- Hughes, J.; Spielberg, A.; Chounlakone, M.; Chang, G.; Matusik, W.; Rus, D. A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2020, 2, 2000002. [Google Scholar] [CrossRef]
- Liang, Y.; Xiao, P.; Ni, F.; Zhang, L.; Zhang, T.; Wang, S.; Zhou, W.; Lu, W.; Kuo, S.W.; Chen, T. Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy 2021, 81, 105617. [Google Scholar] [CrossRef]
- Ouyang, Q.; Yao, C.; Chen, H.; Song, L.; Zhang, T.; Chen, D.; Yang, L.; Chen, M.; Chen, H.j.; Peng, Z.; et al. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array. Biosens. Bioelectron. 2024, 246, 115873. [Google Scholar] [CrossRef]
- Wang, X.; Song, W.Z.; You, M.H.; Zhang, J.; Yu, M.; Fan, Z.; Ramakrishna, S.; Long, Y.Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. Acs Nano 2018, 12, 8588–8596. [Google Scholar] [CrossRef]
- Chun, K.Y.; Son, Y.J.; Jeon, E.S.; Lee, S.; Han, C.S. A self-powered sensor mimicking slow-and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 2018, 30, 1706299. [Google Scholar] [CrossRef]
- Huang, X.; Ma, Z.; Xia, W.; Hao, L.; Wu, Y.; Lu, S.; Luo, Y.; Qin, L.; Dong, G. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 2024, 129, 110019. [Google Scholar] [CrossRef]
- Jin, T.; Sun, Z.; Li, L.; Zhang, Q.; Zhu, M.; Zhang, Z.; Yuan, G.; Chen, T.; Tian, Y.; Hou, X.; et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yin, Z.; Zhang, W.; Xing, C.; Peng, T.; Meng, B.; Yang, J.; Peng, Z. A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition. Nano Energy 2022, 96, 107063. [Google Scholar] [CrossRef]
- Liu, W.; Duo, Y.; Liu, J.; Yuan, F.; Li, L.; Li, L.; Wang, G.; Chen, B.; Wang, S.; Yang, H.; et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 2022, 13, 5030. [Google Scholar] [CrossRef]
- Chang, K.B.; Parashar, P.; Shen, L.C.; Chen, A.R.; Huang, Y.T.; Pal, A.; Lim, K.C.; Wei, P.H.; Kao, F.C.; Hu, J.J.; et al. A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 2023, 111, 108397. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Y.; He, J.; Li, J.; Mu, L.; Zhao, Y.; Liu, H.; Sun, C.L.; Qu, M. Highly moisture-resistant flexible thin-film-based triboelectric nanogenerator for environmental energy harvesting and self-powered tactile sensing. ACS Appl. Mater. Interfaces 2024, 16, 38269–38282. [Google Scholar] [CrossRef]
- Marandi, P.; Saini, D.; Arora, K.; Garg, R.; Sarkar, U.; Parida, K.; Mandal, D.; Neelakandan, P.P. Flexible Organic Molecular Single Crystal-Based Triboelectric Device as a Self-Powered Tactile Sensor. J. Am. Chem. Soc. 2024, 146, 26178–26186. [Google Scholar] [CrossRef] [PubMed]
- Amoli, V.; Kim, J.S.; Jee, E.; Chung, Y.S.; Kim, S.Y.; Koo, J.; Choi, H.; Kim, Y.; Kim, D.H. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 2019, 10, 4019. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Toshiyoshi, H. Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl. Mater. Interfaces 2020, 12, 36449–36457. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, R.; Kim, J.S.; Oh, H.; Kim, D.J.; Lee, S.; Park, C.; Kim, D.H. Ferroelectric-Assisted Ion Dynamics for Prolonged Tactile Cognizance in a Biomimetic Memory-in-Sensor System. Adv. Electron. Mater. 2024, 2400550. [Google Scholar] [CrossRef]
- Gabert, L.; Lenzi, T. Instrumented pyramid adapter for amputee gait analysis and powered prosthesis control. IEEE Sens. J. 2019, 19, 8272–8282. [Google Scholar] [CrossRef]
- Bhirangi, R.; Hellebrekers, T.; Majidi, C.; Gupta, A. Reskin: Versatile, replaceable, lasting tactile skins. In Proceedings of the 5th Annual Conference on Robot Learning, London, UK, 8–11 November 2021. [Google Scholar]
- Zhang, W.; Guo, Q.; Duan, Y.; Xing, C.; Peng, Z. A textile proximity/pressure dual-mode sensor based on magneto-straining and piezoresistive effects. IEEE Sens. J. 2022, 22, 10420–10427. [Google Scholar] [CrossRef]
- Haque, M.R.; Berkeley, G.; Shen, X. Force-Moment Sensor for Prosthesis Structural Load Measurement. Sensors 2023, 23, 938. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, C.; Pan, C.; Hu, H.; Ji, K.; Sun, H.; Lyu, C.; Tang, D.; Li, T.; Fu, J.; et al. Split-Type Magnetic Soft Tactile Sensor with 3D Force Decoupling. Adv. Mater. 2024, 36, 2310145. [Google Scholar] [CrossRef]
- Khamis, H.; Xia, B.; Redmond, S.J. A novel optical 3D force and displacement sensor–Towards instrumenting the PapillArray tactile sensor. Sens. Actuators A Phys. 2019, 291, 174–187. [Google Scholar] [CrossRef]
- Kielar, M.; Hamid, T.; Wu, L.; Windels, F.; Sah, P.; Pandey, A.K. Organic optoelectronic diodes as tactile sensors for soft-touch applications. ACS Appl. Mater. Interfaces 2019, 11, 21775–21783. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Z.; Pan, J.; Wang, Y.; Zhang, L.; Tong, L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv. Mater. Technol. 2021, 6, 2100285. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, Z. 2D tactile sensor based on multimode interference and deep learning. Opt. Laser Technol. 2021, 136, 106760. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Wei, R.; He, J.; Li, J.; Liu, X.; Huang, F.; Ge, S.; Tao, J.; Yuan, Z.; et al. Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 2022, 16, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhu, X.; Xie, W.; Guo, F.; Zhang, C.; Wang, Z. Vision-based tactile sensor using depth from defocus for artificial finger in hand prosthesis. Electron. Lett. 2016, 52, 1665–1667. [Google Scholar] [CrossRef]
- Lambeta, M.; Chou, P.W.; Tian, S.; Yang, B.; Maloon, B.; Most, V.R.; Stroud, D.; Santos, R.; Byagowi, A.; Kammerer, G.; et al. Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robot. Autom. Lett. 2020, 5, 3838–3845. [Google Scholar] [CrossRef]
- Ward-Cherrier, B.; Pestell, N.; Lepora, N.F. Neurotac: A neuromorphic optical tactile sensor applied to texture recognition. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2654–2660. [Google Scholar]
- Fang, B.; Zhao, J.; Liu, N.; Sun, Y.; Zhang, S.; Sun, F.; Shan, J.; Yang, Y. Force Measurement Technology of Vision-Based Tactile Sensor. Adv. Intell. Syst. 2024, 2400290. [Google Scholar] [CrossRef]
- Funk, N.; Helmut, E.; Chalvatzaki, G.; Calandra, R.; Peters, J. Evetac: An event-based optical tactile sensor for robotic manipulation. IEEE Trans. Robot. 2024, 40, 3812–3832. [Google Scholar] [CrossRef]
- Velez-Guerrero, M.A.; Callejas-Cuervo, M.; Mazzoleni, S. Design, development, and testing of an intelligent wearable robotic exoskeleton prototype for upper limb rehabilitation. Sensors 2021, 21, 5411. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, L.; Fan, S.; Yang, B.; Dai, J.; Liu, H. Development of a multisensory underactuated prosthetic hand with fully integrated electronics. IEEE/ASME Trans. Mechatron. 2022, 28, 1187–1198. [Google Scholar] [CrossRef]
- Palli, G.; Pirozzi, S. An optical joint position sensor for anthropomorphic robot hands. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2765–2770. [Google Scholar]
- Engeberg, E.D. A physiological basis for control of a prosthetic hand. Biomed. Signal Process. Control 2013, 8, 6–15. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Zhao, J.; Jiang, L.; Liu, H. Design and control of a multisensory five-finger prosthetic hand. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 3327–3332. [Google Scholar]
- Mio, R.; Ccorimanya, L.; Flores, K.M.; Salazar, G.; Elías, D. Design of a 3D-printable powered prosthetic hand for transmetacarpal amputees. In Advances in Automation and Robotics Research in Latin America, Proceedings of the 1st Latin American Congress on Automation and Robotics, Panama City, Panama, 8–10 February 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 83–96. [Google Scholar]
- Krasoulis, A.; Vijayakumar, S.; Nazarpour, K. Multi-grip classification-based prosthesis control with two EMG-IMU sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.W.; Li, Z.G.; Du, H.; Yan, B.Y.; Lu, P.D. Recognition of upper limb action intention based on IMU. Sensors 2022, 22, 1954. [Google Scholar] [CrossRef]
- Bochniewicz, E.M.; Emmer, G.; Dromerick, A.W.; Barth, J.; Lum, P.S. Measurement of functional use in upper extremity prosthetic devices using wearable sensors and machine learning. Sensors 2023, 23, 3111. [Google Scholar] [CrossRef] [PubMed]
- Galviati, R.; Boccardo, N.; Canepa, M.; Di Domenico, D.; Marinelli, A.; Frigo, C.A.; Laffranchi, M.; De Michieli, L. IMU Sensors Measurements Towards the Development of Novel Prosthetic Arm Control Strategies. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar]
- Bakshi, K.; Pramanik, R.; Manjunatha, M.; Kumar, C. Upper limb prosthesis control: A hybrid EEG-EMG scheme for motion estimation in transhumeral subjects. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2024–2027. [Google Scholar]
- Gardner, M.; Mancero Castillo, C.S.; Wilson, S.; Farina, D.; Burdet, E.; Khoo, B.C.; Atashzar, S.F.; Vaidyanathan, R. A multimodal intention detection sensor suite for shared autonomy of upper-limb robotic prostheses. Sensors 2020, 20, 6097. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, A.; Tacconi, D.; Bongers, R.M.; Farella, E. Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation. Front. Bioeng. Biotechnol. 2024, 12, 1385750. [Google Scholar] [CrossRef]
- Fu, J.; Nguyen, H.; Kim, D.W.; Shallal, C.; Cho, S.M.; Osborn, L.; Thakor, N. Dynamically mapping socket loading conditions during real time operation of an upper limb prosthesis. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 3930–3933. [Google Scholar]
- Stefanelli, E.; Sperduti, M.; Cordella, F.; Tagliamonte, N.; Zollo, L. Performance assessment of thermal sensors for hand prostheses. IEEE Sens. J. 2024, 24, 27559–27569. [Google Scholar] [CrossRef]
- Herrera, E.; Vela, E.; Arce, V.; Sanchez, N.; Molina, K.; Plaza, D. Myolectric response of the upper limbs to temperature variation. In Proceedings of the Proceedings of The International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 14–16 March 2018; pp. 67–71.
- Georgopoulou, A.; Eckey, L.M.; Clemens, F. A prosthetic hand with integrated sensing elements for selective detection of mechanical and thermal stimuli. Adv. Intell. Syst. 2023, 5, 2300122. [Google Scholar] [CrossRef]
- Bates, T.J.; Fergason, J.R.; Pierrie, S.N. Technological advances in prosthesis design and rehabilitation following upper extremity limb loss. Curr. Rev. Musculoskelet. Med. 2020, 13, 485–493. [Google Scholar] [CrossRef]
- Gaetani, F.; De Fazio, R.; Zappatore, G.; Visconti, P. A prosthetic limb managed by sensors-based electronic system: Experimental results on amputees. Bull. Electr. Eng. Inform. 2020, 9, 514–524. [Google Scholar] [CrossRef]
- Gonçalves, R.; Quintão, C.; Vigário, R.; Quaresma, C. Ortho-Monitorizer: A Portable Device to Monitor the Use of Upper Limb Orthoses-A Concept Proof. In Proceedings of the BIODEVICES, Vienna, Austria, 9–11 February 2022; pp. 94–101. [Google Scholar]
- Isobe, M.; Ishii, C. Development of Two-Sensation Feedback Device for Myoelectric Prosthetic Hand Users–Compensation of Effect of Temperature Change on Haptic Feedback. J. Robot. Mechatron. 2020, 32, 199–208. [Google Scholar] [CrossRef]
- Jafar, M.R.; Nagesh, D. Effect of process control agent and mechanical milling on the embedment and uniform dispersion of CNTs and B4C in aluminium matrix. Mater. Today Proc. 2021, 47, 3765–3769. [Google Scholar] [CrossRef]
- Rony, L.; de Sainte Hermine, P.; Steiger, V.; Mallet, R.; Hubert, L.; Chappard, D. Characterization of wear debris released from alumina-on-alumina hip prostheses: Analysis of retrieved femoral heads and peri-prosthetic tissues. Micron 2018, 104, 89–94. [Google Scholar] [CrossRef]
- Long, M.; Rack, H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef] [PubMed]
- Gra̲dzka-Dahlke, M.; Da̲browski, J.R.; Da̲browski, B. Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint. Wear 2007, 263, 1023–1029. [Google Scholar] [CrossRef]
- Godbole, N.; Yadav, S.; Ramachandran, M.; Belemkar, S. A review on surface treatment of stainless steel orthopedic implants. Int. J. Pharm. Sci. Rev. Res. 2016, 36, 190–194. [Google Scholar]
- Khare, J.M.; Dahiya, S.; Gangil, B.; Ranakoti, L. Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Mater. Today Proc. 2021, 38, 345–349. [Google Scholar] [CrossRef]
- Gariboldi, F.; Scapinello, M.; Petrone, N.; Migliore, G.L.; Teti, G.; Cutti, A.G. Static strength of lower-limb prosthetic sockets: An exploratory study on the influence of stratigraphy, distal adapter and lamination resin. Med. Eng. Phys. 2023, 114, 103970. [Google Scholar] [CrossRef]
- Rezvanifar, S.C.; Conklin, S.; Davis, B.L. Experimental thermal analysis of a novel prosthetic socket along with silicone and PCM liners. J. Biomech. 2020, 104, 109788. [Google Scholar] [CrossRef]
- Varsavas, S.D.; Michalec, P.; Arbeiter, F. A Comprehensive Study on Thermoplastic Elastomers for Additive Manufacturing of Leg Prosthesis. Next Mater. 2025, 2025, 100700. [Google Scholar] [CrossRef]
- Leblanc, R.C. Characterization and Design of Thermoplastic Polyurethane/Elastomer and Hydrogel Materials for Sweat-Absorbing Prosthetic Liners. Master’s Thesis, Case Western Reserve University, Cleveland, OH, USA, 2023. [Google Scholar]
- Sanders, J.E.; Nicholson, B.S.; Zachariah, S.G.; Cassisi, D.V.; Karchin, A.; Fergason, J.R. Testing of elastomeric liners used in limb prosthetics: Classification of 15 products by mechanical performance. J. Rehabil. Res. Dev. 2004, 41, 175–186. [Google Scholar] [CrossRef]
- Klute, G.K.; Glaister, B.C.; Berge, J.S. Prosthetic liners for lower limb amputees: A review of the literature. Prosthet. Orthot. Int. 2010, 34, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, A.; Morrison, J. Polyurethane gel liner usage in the Oxford Prosthetic Service. Prosthet. Orthot. Int. 2001, 25, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, N.A.M.N.; Razak, N.A.A.; Karim, M.S.A.; Osman, N.A.A. Surface profile analysis of laminated transfemoral prosthetic socket fabricated with different ratios of epoxy resin and acrylic resin. Sci. Rep. 2023, 13, 2664. [Google Scholar] [CrossRef] [PubMed]
- Abd Razak, N.; Osman, N.A.; Ali, S.; Gholizadeh, H.; Abas, W.W. Comparison study of the prosthetics interface pressure profile of air splint socket and ICRC polypropylene socket for upper limb prosthetics. Biocybern. Biomed. Eng. 2015, 35, 100–105. [Google Scholar] [CrossRef]
- Jensen, J.; Craig, J.; Mtalo, L.; Zelaya, C. Clinical field follow-up of high density polyethylene (HDPE)-Jaipur prosthetic technology for trans-femoral amputees. Prosthet. Orthot. Int. 2004, 28, 152–166. [Google Scholar] [CrossRef]
- Sunderman Jr, F.W. Carcinogenicity of metal alloys in orthopedic prostheses: Clinical and experimental studies. Toxicol. Sci. 1989, 13, 205–216. [Google Scholar] [CrossRef]
- Elsner, J.J.; McKeon, B.P. Orthopedic application of polycarbonate urethanes: A review. Tech. Orthop. 2017, 32, 132–140. [Google Scholar] [CrossRef]
- Grze̲da, D.; We̲grzyk, G.; Leszczyńnska, M.; Szczepkowski, L.; Gloc, M.; Ryszkowska, J. Viscoelastic polyurethane foams for use as auxiliary materials in orthopedics. Materials 2021, 15, 133. [Google Scholar] [CrossRef]
- Smit, G.; Plettenburg, D.H. Comparison of mechanical properties of silicone and PVC (polyvinylchloride) cosmetic gloves for articulating hand prostheses. J. Rehabil. Res. Dev. 2013, 50, 723–732. [Google Scholar] [CrossRef]
- Koepke, G.H.; Giacinto, J.P.; McUmber, R.A. Polyvinylchloride Gel in Orthotics and Prosthetics. In Part II, Silicone Gel Below-Knee Amputation Prostheses, Orthotics and Prosthetics; University of Michigan Medical Center Journal: Ann Arbor, MI, USA, 1971; pp. 20–22. [Google Scholar]
- Najmi, Z.; Mlinarić, N.M.; Scalia, A.C.; Cochis, A.; Selmani, A.; Učakar, A.; Abram, A.; Zore, A.; Delač, I.; Jerman, I.; et al. Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon 2024, 10, e23849. [Google Scholar] [CrossRef]
- Quintero-Quiroz, C.; Botero, L.E.; Zárate-Triviño, D.; Acevedo-Yepes, N.; Escobar, J.S.; Pérez, V.Z.; Cruz Riano, L.J. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020, 24, 13. [Google Scholar] [CrossRef]
- Donati, F.; Ziranu, A.; Perisano, C.; Spinelli, S.; Di Giacomo, G.; Maccauro, G. Silver coated prosthesis in oncological limb salvage surgery reduce the infection rate. J. Biol. Regul. Homeost. Agents 2016, 98, 120. [Google Scholar]
- Stavdahl, O.; Hermansson, L.; Pettersson, S.O.; Kristensen, K.T.; Malvig, K.E.; Cypromed, A. Evaluation of built-in lithium-ion batteries used as an energy source for externally powered upper-limb prostheses-preliminary results. MEC 1997, 97, 23–25. [Google Scholar]
- Fonseca, G.; Nunes-Pereira, J.; Silva, A.P. 3D Printed Robotic Hand with Piezoresistive Touch Capability. Appl. Sci. 2023, 13, 8002. [Google Scholar] [CrossRef]
- Thomas, N.; Fazlollahi, F.; Kuchenbecker, K.J.; Brown, J.D. The utility of synthetic reflexes and haptic feedback for upper-limb prostheses in a dexterous task without direct vision. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 169–179. [Google Scholar] [CrossRef]
- Shah, S.K.H.; Tiwana, M.I.; Tiwana, M.I.; Gohar, G.A.; Anwar, M.T.; Rasheed, T. Design and analysis of bio-mimicking tactile sensor for upper limb prosthesis. Microsyst. Technol. 2023, 29, 1671–1679. [Google Scholar] [CrossRef]
- Aqueveque, P.; Germany, E.; Pastene, F.; Osorio, R. Exploring Silicone Rubber Skin with Embedded Customizable Shape Capacitive Sensors to Enable Haptic Capabilities on Upper Limb Prosthetics. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4241–4244. [Google Scholar]
Machine Learning Methods | Sensors Used | Subject Types | Accuracy/Key Results | Implementation |
---|---|---|---|---|
SVM, k-NN, ANN | Surface EMG | Amputees, Non-amputees | Up to 97% [9,13] | Classification for dataset; hand-gesture classification |
CNN (Transfer Learning) | sEMG signals | Healthy subjects | 95.45% [14] | Real-time classification |
CNN + SVM (Time–Frequency Features) | sEMG signals | Healthy subjects | 99.9% [18] | Hybrid learning |
ResNet (Residual Learning) | sEMG signals | Primarily amputees (lower-limb focus, adaptable to upper limb) | 95.34% [45] | Deep learning |
Temporal Multi-Channel Transformers | Surface EMG | Healthy subjects, Non-amputees | Up to 95% [15] | Deep learning |
XAI Approach | Surface EMG | Amputees | 93.11%; high interpretability [19] | Explainable AI |
k-NN + Advanced Filtering (Wiener, Hampel) | Surface EMG | Transhumeral amputees | Up to 88% [20] | Supervised learning |
Transient EMG Classifier | sEMG signals | Amputees, Non-amputees | High accuracy for cross-subject recognition [23] | Supervised learning |
Hybrid Neural Network + Transfer Learning | EMG signals | Elderly population (fall-risk gait) | 95% [17] | Hybrid learning |
Dual Multi-Classifier (Fuzzy Logic) | EMG signals | Not specified | High reliability in noisy conditions [25] | Fuzzy logic |
Optimized PR System for Hannes Prosthesis | sEMG signals | Amputees | F1 score 99.8% [35] | Pattern recognition |
Reinforcement Learning-Based Personalization | EMG signals | Not specified | High kinematic-estimation accuracy [46] | Reinforcement learning |
MDSDA Network (Domain Adaptation) | sEMG signals | Healthy (configurable for broader use) | Improved robustness across domain shifts [39] | Transfer learning |
Hybrid Tongue–Myoelectric Interface | EMG + Tongue sensor | Not specified (in-lab tests) | 19% improvement in task times [47] | Hybrid learning |
Actuation Mechanism | Source of Actuation | Advantages | Disadvantages | Robotic Hand/Robotic Gripper/Robotic Finger | Application Type | Refs. |
---|---|---|---|---|---|---|
Tendon-driven | Electric motor | Independent control of stiffness and position, versatile motion | Bulky design, heavy weight | Robotic hand | Rigid robotics | [76] |
Electric motor | Wrench estimation | Complex structure | Robotic finger | Rigid robotics | [77] | |
Thermal activation | Attractive design, natural size, good dexterity | Only lightweight objects can be grasped and lifted | Robotic hand | Rigid robotics | [78] | |
Electric motor and fluid pressure | Attractive look, good bending angle and force | Complex design of actuation, bulky size, heavy weight, no feedback control | Robotic hand | Soft robotics | [79] | |
Tendon | Various shapes of objects for grasping, simple scheme of actuation, fast response | Ugly design | Robotic gripper | Soft robotics | [98] | |
Electric motor | Design similar to human finger, simple actuation scheme | Complex structure, development of the design can be costly | Robotic finger | Rigid robotics | [80] | |
Electric motor | Design close to natural, effective swing mechanics, high impact resistance, increased swing speed | Tactile sensors are not integrated, limited grasping motions of the fingers | Robotic hand | Rigid robotics | [81] | |
Tendon | Attractive design, lightweight, tendon routing is not complex, fast response | Stiffness is hight dependent on string properties, might require frequent maintenance due to multiple strings in the design | Robotic finger | Rigid robotics | [99] | |
Electric motor and fluid pressure | Natural appearance of the design, good grasping and lifting performance | Complicated source of actuation, too bulky design | Robotic hand | Soft robotics | [82] | |
Tendon-driven | Electric motor | Good dexterity, attractive fashion, multiple grips can be achieved, lightweight | Feedback control is not integrated, design material could be improved | Robotic hand | Rigid robotics | [83] |
Electric motor | Antagonistic actuation, fast response of fingers, good grasping performance | Not natural appearance, heavy weight | Robotic hand | Rigid robotics | [84] | |
Electric motor | Elongatable fingers, high dexterity, feedback control based on soft tactile sensors, improved grasping performance | Might require complex maintenance due to complex actuation structure | Robotic finger | Rigid robotics | [85] | |
Linkage driven | Electric motor | Good grasping, reduced number of motors, strong load bearing | Bulky design with unnatural appearance, only three fingers | Robotic hand | Rigid robotics | [86] |
Electric motor | Only single actuator, can grasp objects with various shapes, acceptable hand closing time | Bulky design and heavy weight, absence of feedback control | Robotic hand | Rigid robotics | [87] | |
Electric motor | Acceptable grasping performance, load lifting force | Bulky and rude design, only three fingers, complex structure with several driving modules | Robotic hand | Rigid robotics | [88] | |
Electric motor | Simple structure, acceptable adaptability for grasping different shapes | Unnatural appearance, no feedback | Robotic gripper | Rigid robotics | [100] | |
Electric motor | Can accomplish 33 postures in the GRASP taxonomy | Cables cannot bear high loads, bulky design | Robotic hand | Rigid robotics | [69] | |
Pneumatic | Air pressure | Grasping different shapes, simple actuation scheme, fast response | Unnatural appearance, bulky design, only four fingers, requires pressure source for actuation | Robotic hand | Soft robotics | [91] |
Air pressure | Fast response, good grasping and pinching | Requires pressure source | Robotic gripper | Soft robotics | [92] | |
Air pressure | Lightweight, fast grasping response, good grasping, good stiffness | Complicated scheme of actuation, the repair might be costly | Robotic hand | Rigid/Soft robotics | [93] | |
Air pressure | Can grasp different shapes | Unnatural design, low grasping force | Robotic hand | Soft robotics | [94] | |
Hydrogen peroxide | Lightweight, compact size, good grasping | Complex actuation scheme, requires peroxide solution pack, no feedback control | Robotic hand | Soft robotics | [95] | |
Air pressure | Simple actuation scheme | Unnatural appearance, low grasping and payload force | Robotic gripper | Soft robotics | [96] | |
Air pressure | Good grasping performance, feedback control | Unnatural view, only four fingers, complex design | Robotic hand | Soft robotics | [97] |
Sensor Type | Feedback Modality |
---|---|
Capacitive Tactile Sensors | Force |
Piezoresistive Tactile Sensors | Force, Slip |
Piezoelectric Tactile Sensors | Force, Slip |
Triboelectric Tactile Sensors | Force, Slip |
Electro-chemical Tactile Sensors | Force, Temperature |
Magnetic Tactile Sensors | Force |
Optical Tactile Sensors | Force, Slip, Position |
Vision-based Tactile Sensors | Force, Slip |
Position (Proprioceptive) Sensors | Position/Angle |
IMU Sensors | Orientation, Acceleration, Angular velocity |
Temperature Sensors | Temperature |
Material | Key Properties | Common Uses |
---|---|---|
Aluminum | Lightweight, Corrosion-resistant | Mechanical components |
Titanium | Lightweight, Strong, Durable | High-performance or premium prosthetics |
Acrylic resin | Durable, customizable | Forming rigid sockets |
Polypropylene | Lightweight, easily moldable | Sockets, flexible components |
Polyethylene | Flexible, durable | Sockets (in some cases) |
Silicone | Flexible, durable, skin-friendly | Prosthetic liners |
Thermoplastic elastomers (TPEs) | Soft, stretchable, lightweight | Liners or soft sockets |
Gel liners | Provide cushioning, reduce friction | Between the skin and prosthetic socket |
Stainless steel | Strong, durable, heavier | Areas where high strength is critical |
Carbon fiber | Lightweight, strong, highly durable | Advanced prosthetics (excellent strength-to-weight ratio) |
Steel alloys | Robust, suitable for high-stress applications | Hinges, locking mechanisms |
Polycarbonate | Lightweight, strong | Structural or cosmetic components |
Advanced polymers (e.g., DELRIN) | Stable, wear-resistant, suitable for small precision parts | Bushings, small moving parts |
Copper and silver | High electrical conductivity | Wiring, conductive electrodes |
Lithium-ion batteries | High energy density, stable power supply | Power source for motors, sensors |
Plastic and metal alloys | Protective, durable, can be molded or machined | Housing microprocessors and electronic components |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdikenov, B.; Zholtayev, D.; Suleimenov, K.; Assan, N.; Ozhikenov, K.; Ozhikenova, A.; Nadirov, N.; Kapsalyamov, A. Emerging Frontiers in Robotic Upper-Limb Prostheses: Mechanisms, Materials, Tactile Sensors and Machine Learning-Based EMG Control: A Comprehensive Review. Sensors 2025, 25, 3892. https://doi.org/10.3390/s25133892
Abdikenov B, Zholtayev D, Suleimenov K, Assan N, Ozhikenov K, Ozhikenova A, Nadirov N, Kapsalyamov A. Emerging Frontiers in Robotic Upper-Limb Prostheses: Mechanisms, Materials, Tactile Sensors and Machine Learning-Based EMG Control: A Comprehensive Review. Sensors. 2025; 25(13):3892. https://doi.org/10.3390/s25133892
Chicago/Turabian StyleAbdikenov, Beibit, Darkhan Zholtayev, Kanat Suleimenov, Nazgul Assan, Kassymbek Ozhikenov, Aiman Ozhikenova, Nurbek Nadirov, and Akim Kapsalyamov. 2025. "Emerging Frontiers in Robotic Upper-Limb Prostheses: Mechanisms, Materials, Tactile Sensors and Machine Learning-Based EMG Control: A Comprehensive Review" Sensors 25, no. 13: 3892. https://doi.org/10.3390/s25133892
APA StyleAbdikenov, B., Zholtayev, D., Suleimenov, K., Assan, N., Ozhikenov, K., Ozhikenova, A., Nadirov, N., & Kapsalyamov, A. (2025). Emerging Frontiers in Robotic Upper-Limb Prostheses: Mechanisms, Materials, Tactile Sensors and Machine Learning-Based EMG Control: A Comprehensive Review. Sensors, 25(13), 3892. https://doi.org/10.3390/s25133892