Continuous Wavelet Transform-Based Method for High-Sensitivity Detection of Image Signals of Fluorescence Lateral Flow Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. FLFA Signal Detection System
2.2. High-Sensitivity Detection Algorithm for Fluorescent Signals Based on CWT
2.3. Basic Principle of CWT
2.4. FLFA Image Directional Projection Curve
2.5. Peaks Location Based on CWT
2.6. Fluorescence Region Extraction
2.7. Fluorescence Signal Quantification Based on CWT Peak Integral Volume
3. Results and Discussion
3.1. Comparison Test With or Without Filters
3.2. Repeatability Analysis of Fluorescence Signal Detection
3.3. Comparison Test of Peak Location Algorithms
3.4. Practical Application of the Filterless Detection System and CWT Analysis Algorithm
3.4.1. Quantitative Analysis for Single-Channel FLFA
3.4.2. Quantitative Analysis of Dual-Channel FLFA
- (1)
- Sandwich FLFA
- (2)
- Competitive FLFA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Boëlle, P.Y.; Ansart, S.; Cori, A.; Valleron, A.J. Transmission parameters of the A/H1N1 influenza virus pandemic: A review. Influenza Other Respir. Viruses 2011, 5, 306–316. [Google Scholar] [CrossRef]
- Baloch, S.; Baloch, M.A.; Zheng, T.L.; Pei, X.F. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, L.X.; Li, J.Z.; Ouyang, H.; Fu, Z.F. Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1. Talanta 2021, 227, 122203. [Google Scholar] [CrossRef]
- Iwasaki, W.; Morita, N.; Miyazaki, M. Portable Electrochemical Immunochromatography Platform for Point-of-care Testing and Comparison with Enzyme-linked Immunosorbent Assay. Sens. Mater. 2020, 32, 4131–4138. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, K.; Yang, J.C.; Xu, H.; Cao, B.; Wo, Y.; Jin, Q.H.; Cui, D.X. Algorithms for immunochromatographic assay: Review and impact on future application. Analyst 2019, 144, 5659–5676. [Google Scholar] [CrossRef]
- Yang, Q.H.; Gong, X.Q.; Song, T.; Yang, J.M.; Zhu, S.J.; Li, Y.H.; Cui, Y.; Li, Y.X.; Zhang, B.B.; Chang, J. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens. Bioelectron. 2011, 30, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.Y.; You, Y.; Xie, L.S.; Zhang, H.; Ye, L.S.; Hong, W.X.; Li, Y.R. A new imaged-based quantitative reader for the gold immunochromatographic assay. Optik 2018, 152, 92–99. [Google Scholar] [CrossRef]
- Hou, Y.F.; Wang, K.; Xiao, K.; Qin, W.J.; Lu, W.T.; Tao, W.; Cui, D.X. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips. Nanoscale Res. Lett. 2017, 12, 291. [Google Scholar] [CrossRef]
- Tian, C.W.; Zheng, M.H.; Zuo, W.M.; Zhang, B.; Zhang, Y.N.; Zhang, D.V. Multi-stage image denoising with the wavelet transform. Pattern Recognit. 2023, 134, 109050. [Google Scholar] [CrossRef]
- Kalyani, V.L.; Sharma, V.J. Different types of optical filters and their realistic application. J. Manag. Eng. Inf. Technol. (JMEIT) 2016, 3. Available online: https://www.researchgate.net/profile/Vijay-Kalyani/publication/304696446_Different_types_of_Optical_Filters_and_their_Realistic_Application/links/5777516108aeb9427e279a0b/Different-types-of-Optical-Filters-and-their-Realistic-Application.pdf (accessed on 14 April 2025).
- Rayan, D.A.; Elbashar, Y.H.; Rashad, M.M.; El-Korashy, A. Optical spectroscopic analysis of cupric oxide doped barium phosphate glass for bandpass absorption filter. J. Non-Cryst. Solids 2013, 382, 52–56. [Google Scholar] [CrossRef]
- Steele, J.J.; van Popta, A.C.; Hawkeye, M.M.; Sit, J.C.; Brett, M.J. Nanostructured gradient index optical filter for high-speed humidity sensing. Sens. Actuators B-Chem. 2006, 120, 213–219. [Google Scholar] [CrossRef]
- Diehl, D.W.; George, N. Holographic interference, filters for infrared communications. Appl. Opt. 2003, 42, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.-T.; Lee, S.-S. Transmission type color filter incorporating a silver film based etalon. Opt. Express 2010, 18, 5344–5349. [Google Scholar] [CrossRef]
- Zhang, Y.; Sim, H.J.; Hwang, J.J.; Lee, H.-L.; Moon, S.J. Measurement of spectral transmissivity of quartz plates used in rapid thermal processing. Opt. Mater. 2024, 149, 115028. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Y.; Hu, X.; Zhang, T.; Liang, M.; Yang, X.; Yang, H. Region growing algorithm combined with fast peak detection for segmenting colloidal gold immunochromatographic strip images. IEEE Access 2019, 7, 169715–169723. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, H.; Yang, J.; Jiang, H.; Du, M.; Vai, M.; Pun, S.; Gao, Y. Automatic range adjustment of the fluorescence immunochromatographic assay based on image processing. Sensors 2019, 20, 209. [Google Scholar] [CrossRef]
- Zeng, N.; Zhang, H.; Li, Y.; Liang, J.; Dobaie, A.M. Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms. Neurocomputing 2017, 247, 165–172. [Google Scholar] [CrossRef]
- Deng, F.; Li, H.; Wang, R.; Yue, H.; Zhao, Z.; Duan, Y. An improved peak detection algorithm in mass spectra combining wavelet transform and image segmentation. Int. J. Mass Spectrom. 2021, 465, 116601. [Google Scholar] [CrossRef]
- Suresh, I.; Nesakumar, N.; Jegadeesan, G.B.; Jeyaprakash, B.; Rayappan, J.B.B.; Kulandaiswamy, A.J. Real-time detection of imidacloprid residues in water using f-MWCNT/EDTA as energetically suitable electrode interface. Anal. Chim. Acta 2022, 1235, 340560. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Lee, C.; Lee, M.J. Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Biol. Med. 2009, 39, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; De Souza, D.P.; Keen, W.W.; Saunders, E.C.; McConville, M.J.; Speed, T.P.; Likić, V.A. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinform. 2007, 8, 419. [Google Scholar] [CrossRef]
- Qian, J.Q.; He, Q.Q.; Liu, L.L.; Wang, M.; Wang, B.M.; Cui, L.W. Rapid quantification of artemisinin derivatives in antimalarial drugs with dipstick immunoassays. J. Pharm. Biomed. Anal. 2020, 191, 113605. [Google Scholar] [CrossRef]
- Wang, C.W.; Yu, Q.; Li, J.X.; Zheng, S.; Wang, S.; Gu, B. Colorimetric-fluorescent dual-signal enhancement immunochromatographic assay based on molybdenum disulfide-supported quantum dot nanosheets for the point-of-care testing of monkeypox virus. Chem. Eng. J. 2023, 472, 144889. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zheng, S.; Zhang, C.J.; Wang, W.Q.; Wang, Q.; Li, Z.G.; Wang, S.; Zhang, L.; Liu, Y. Introduction of multilayered quantum dot nanobeads into competitive lateral flow assays for ultrasensitive and quantitative monitoring of pesticides in complex samples. Microchim. Acta 2023, 190, 361. [Google Scholar] [CrossRef]
- Hsieh, H.V.; Dantzler, J.L.; Weigl, B.H. Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics 2017, 7, 29. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Jiao, S.; Zhao, Y.; Guo, Y.; Wang, M.; Zhu, G. Quantum-dot-based lateral flow immunoassay for detection of neonicotinoid residues in tea leaves. J. Agric. Food chemistry 2017, 65, 10107–10114. [Google Scholar] [CrossRef]
- Lomae, A.; Teekayupak, K.; Preechakasedkit, P.; Pasomsub, E.; Ozer, T.; Henry, C.S.; Citterio, D.; Vilaivan, T.; Chailapakul, O.; Ruecha, N. Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses. Talanta 2024, 279, 126613. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Han, C.; Chen, Z.; Zhai, X.; Li, Z.; Zheng, K.; Zhu, J.; Wang, X.; Zou, X.; et al. Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem. 2021, 358, 129898. [Google Scholar] [CrossRef]
- Wang, C.; Shen, W.; Li, Z.; Xia, X.; Li, J.; Xu, C.; Zheng, S.; Gu, B. 3D film-like nanozyme with a synergistic amplification effect for the ultrasensitive immunochromatographic detection of respiratory viruses. ACS Nano 2024, 18, 25865–25879. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Zheng, S.; Li, Z.; Wu, X.; Wang, C.; Liu, Y.; Zhang, L.; Liu, F.; Wang, S. Silicon-based bimetallic nanozyme-enhanced immunochromatographic strips for highly sensitive simultaneous detection of multiple environmental pollutants. Chem. Eng. J. 2025, 506, 159936. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, S.; Wang, C.; Zhang, L.; Liu, Y.; Wu, X.; Wang, S. A novel competitive color-tone change fluorescence immunochromatographic assay for the ultrasensitive detection of pesticide and veterinary drug residues. Sens. Actuators B Chem. 2024, 417, 136125. [Google Scholar] [CrossRef]
Method | Test Accuracy | |
---|---|---|
Weak Signal | Noise | |
Threshold method | 71% | 65% |
Curve-fitting | 80% | 76% |
Dynamic programming | 85% | 80% |
Gaussian model peak localization | 89% | 81% |
Our method | 95% | 98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wu, X.; Wang, Q.; Zhang, L.; Li, Z.; Peng, Y.; Bian, Q.; Shi, H.; Liu, Y.; Wang, S. Continuous Wavelet Transform-Based Method for High-Sensitivity Detection of Image Signals of Fluorescence Lateral Flow Assay. Sensors 2025, 25, 3846. https://doi.org/10.3390/s25133846
Zhang T, Wu X, Wang Q, Zhang L, Li Z, Peng Y, Bian Q, Shi H, Liu Y, Wang S. Continuous Wavelet Transform-Based Method for High-Sensitivity Detection of Image Signals of Fluorescence Lateral Flow Assay. Sensors. 2025; 25(13):3846. https://doi.org/10.3390/s25133846
Chicago/Turabian StyleZhang, Tao, Xiaosong Wu, Qian Wang, Long Zhang, Zhigang Li, Yangyang Peng, Qian Bian, Hui Shi, Yong Liu, and Shu Wang. 2025. "Continuous Wavelet Transform-Based Method for High-Sensitivity Detection of Image Signals of Fluorescence Lateral Flow Assay" Sensors 25, no. 13: 3846. https://doi.org/10.3390/s25133846
APA StyleZhang, T., Wu, X., Wang, Q., Zhang, L., Li, Z., Peng, Y., Bian, Q., Shi, H., Liu, Y., & Wang, S. (2025). Continuous Wavelet Transform-Based Method for High-Sensitivity Detection of Image Signals of Fluorescence Lateral Flow Assay. Sensors, 25(13), 3846. https://doi.org/10.3390/s25133846