Measurement Performance Improvement of Buried Strain Sensors for Asphalt Pavement Using Mesoscale Finite Element Simulation
Abstract
1. Introduction
2. Objective
3. Measurement Accuracy of Buried Strain Sensor
4. Development of Mesoscale Finite Element Model
4.1. Geometry
4.2. Mesh
4.3. Material Properties
4.4. Boundary Conditions
5. Measurement Performance Improve of Buried Strain Sensor
5.1. Deformation Compatibility of Buried Strain Sensor
5.1.1. Effect of Sensor Equivalent Modulus
5.1.2. Effect of Sensor Encapsulation Modulus
5.2. Measurement Stability of Buried Strain Sensor
5.2.1. Effect of Asphalt Mixture Modulus
5.2.2. Effect of Nominal Maximum Particle Size
5.2.3. Effect of Flange Wing
5.2.4. Effect of Sensor Gauge Length
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, D.; Liu, G.; Xi, Y.; Xia, X.; Zhao, Y. Real-time monitoring of strain and modulus of asphalt pavement using built-in strain sensor cluster. Constr. Build. Mater. 2023, 384, 131413. [Google Scholar] [CrossRef]
- Mustafa, S.; Sekiya, H.; Morichika, S.; Maeda, I.; Takaba, S.; Hamajima, A. Monitoring internal strains in asphalt pavements under static loads using embedded distributed optical fibers. Opt. Fiber Technol. 2022, 68, 102829. [Google Scholar] [CrossRef]
- Hauswirth, D.; Tsirantonaki, D.; Fischli, F.; Rabaiotti, C.; Puzrin, A.M. Measuring strain distributions in an asphalt pavement using fibre optic sensors under static loading by test vehicles. Road Mater. Pavement Des. 2025, 26, 1023–1040. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, H.; Wang, C.; Feng, P. Applications and challenges of digital twin intelligent sensing technologies for asphalt pavements. Autom. Constr. 2024, 164, 105480. [Google Scholar] [CrossRef]
- Liao, M.; Liang, S.; Luo, R.; Chen, Y. The moving load identification method on asphalt roads based on the BP neural network and FBG sensor monitoring. Constr. Build. Mater. 2023, 378, 131216. [Google Scholar] [CrossRef]
- Yin, F.; Kmetz, M.; Timm, D.; West, R.; Taylor, A. Laboratory and Field Performance Characterization of Recycled-Plastic-Modified Asphalt Mixtures at the National Center for Asphalt Technology Test Track. Transp. Res. Rec. 2025. [Google Scholar] [CrossRef]
- Liu, H.; Ge, W.; Pan, Q.; Hu, R.; Lv, S.; Huang, T. Characteristics and analysis of dynamic strain response on typical asphalt pavement using Fiber Bragg Grating sensing technology. Constr. Build. Mater. 2021, 310, 125242. [Google Scholar] [CrossRef]
- Huang, W.; Liu, C.; Guo, W.; Wei, Y. A Surface Texture Prediction Model Based on RIOHTrack Asphalt Pavement Testing Data. Appl. Sci. 2022, 12, 10539. [Google Scholar] [CrossRef]
- Radeef, H.R.; Hassan, N.A.; Mahmud, M.Z.H.; Abidin, A.R.Z.; Jaya, R.P.; Ismail, C.R.; Abbas, H.F. Linear viscoelastic response of semi-circular asphalt sample based on digital image correlation and XFEM. Measurement 2022, 192, 110866. [Google Scholar] [CrossRef]
- Zeng, M.; Hauswirth, D.; Morf, U.; Zhao, H.; Puzrin, A. Strain mode measurement of asphalt pavements using distributed fibre optic sensor data. Constr. Build. Mater. 2024, 450, 138730. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Dong, Z.J.; Tian, G.L.; Hu, Q.L. Evaluating method of the coordination deformation between asphalt mixture and fiber Bragg grating sensor. J. Civ. Environ. Eng. 2009, 32, 100–104. [Google Scholar]
- Zhao, H.; Gu, S.; Ma, L. Measurement accuracy comparison of in-situ asphalt pavement strain sensors based on digital Image correlation technique. J. Tongji Univ. (Nat. Sci.) 2018, 46, 1211–1217. [Google Scholar]
- Han, D.; Liu, G.; Xi, Y.; Zhao, Y. Theoretical analysis on the measurement accuracy of embedded strain sensor in asphalt pavement dynamic response monitoring based on FEM. Struct. Control. Health Monit. 2022, 29, e3140. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.; Liu, Z.; Liu, L. Study on influencing factors of synergistic deformation between built-in strain sensor and asphalt mixture. Case Stud. Constr. Mater. 2023, 18, e01993. [Google Scholar] [CrossRef]
- Liao, M.; Liang, S.; Luo, R.; Xiao, Y. The cooperative deformation test of an embedded FBG sensor and strain correction curve verification. Constr. Build. Mater. 2022, 342, 128029. [Google Scholar] [CrossRef]
- Rebelo, F.; Dabiri, A.; Silva, H.; Oliveira, J. Laboratory investigation of sensors reliability to allow their incorporation in a real-time road pavement monitoring system. In International Conference on Trends on Construction in the Post-Digital Era; Springer International Publishing: Cham, Switzerland, 2022; pp. 490–501. [Google Scholar]
- Liu, W.; Wang, H.; Zhou, Z.; Xing, X.; Cao, D.; Jiang, Z. Optical fiber-based sensors with flexible encapsulation for pavement behavior monitoring. Struct. Control. Health Monit. 2015, 22, 301–313. [Google Scholar] [CrossRef]
- Yin, P.; Pan, B. Evaluation of temperature sensitivity of recycled asphalt based on numerical analysis model and thermal analysis kinetics. Constr. Build. Mater. 2022, 344, 128153. [Google Scholar] [CrossRef]
- Hawesah, H.A.; Sadique, M.; Harris, C.; Nageim, H.A.; Stopp, K.; Pearl, H. Polymer modified asphalt binder–an approach for enhancing temperature sensitivity for emergency pavement repair. Int. J. Pavement Eng. 2022, 23, 4760–4774. [Google Scholar] [CrossRef]
- de Oliveira, L.S.; da Silva, L.S.V.; Júnior, J.L.O.L.; Babadopulos, L.F.d.A.L.; Soares, J.B. Linear viscoelasticity and fatigue life: Relationships between properties of asphalt binders and corresponding mixtures. Constr. Build. Mater. 2023, 372, 130685. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Tran, B.V.; Nguyen, M.L.; Hoang, T.T.N.; Chailleux, E.; Bui, V.P. Relationships between 3D linear viscoelastic properties of bitumen, asphalt mastics and asphalt mixtures using micromechanical models. Constr. Build. Mater. 2024, 416, 135299. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Y.; Wu, Z.; Si, C.; Zhang, J.; Wang, S.; Gao, Y.; Li, Z.; Wei, Z. Evaluation of filler particle size effect of dynamic modulus for asphalt mastic with a new combined micromechanics approach. Constr. Build. Mater. 2025, 477, 141335. [Google Scholar] [CrossRef]
- Shi, S.; Sun, E.; Wang, G. Mechanical response analysis of asphalt microstructure under tensile and compressive loading based on finite element methods. Constr. Build. Mater. 2024, 449, 138424. [Google Scholar] [CrossRef]
- Du, C.; Liu, P.; Ganchev, K.; Lu, G.; Oeser, M. Influence of microstructure evolution of bitumen on its micromechanical property by finite element simulation. Constr. Build. Mater. 2021, 293, 123522. [Google Scholar] [CrossRef]
- Liu, G.; Huang, T.; Liu, Z.; Jiang, N. Evaluation of affinity between aggregate skeleton topology and rutting performance of asphalt mixture based on network theory. Constr. Build. Mater. 2025, 458, 139647. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Kefal, A. Sensor placement optimization for shape sensing of plates and shells using genetic algorithm and inverse finite element method. Sensors 2022, 22, 9252. [Google Scholar] [CrossRef]
- Oboe, D.; Colombo, L.; Sbarufatti, C.; Giglio, M. Shape sensing of a complex aeronautical structure with inverse finite element method. Sensors 2021, 21, 1388. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Kytinou, V.K.; Voutetaki, M.E.; Karayannis, C.G. Flexural damage diagnosis in reinforced concrete beams using a wireless admittance monitoring system—Tests and finite element analysis. Sensors 2021, 21, 679. [Google Scholar] [CrossRef]
- Han, D.; Chen, S.; Tang, D.; Liu, G.; Zhao, Y.; Xu, N. Optimization of asphalt pavement strain measurement across a wide temperature range. Constr. Build. Mater. 2025, 464, 140198. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Wu, C.; Ren, H.; Zhou, Z.; Tang, S. Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor. Constr. Build. Mater. 2022, 321, 126085. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, G.; Xin, X.; Xiao, F.; Liang, M.; Wang, C.; Jiao, Y.; Zhu, Y.; Liu, S.; Wang, H. Mechanical response analysis of asphalt pavement structure with embedded sensor. Coatings 2022, 12, 1728. [Google Scholar] [CrossRef]
- Alimohammadi, H.; Zheng, J.; Buss, A.; Schaefer, V.R.; Williams, C.; Zheng, G. Finite element viscoelastic simulations of rutting behavior of hot mix and warm mix asphalt overlay on flexible pavements. Int. J. Pavement Res. Technol. 2021, 14, 708–719. [Google Scholar] [CrossRef]
- Alae, M.; Ling, M.; Haghshenas, H.F.; Zhao, Y. Three-dimensional finite element analysis of top-down crack propagation in asphalt pavements. Eng. Fract. Mech. 2021, 248, 107736. [Google Scholar] [CrossRef]
- Avilés-Rojas, N.; Suárez, F.; Chamorro, A.; González, A. Flood impact on structural response of asphalt pavement: A finite element modeling approach. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; p. 105259. [Google Scholar]
- JTG 3441-2024; Ministry of Transport of the People’s Republic of China. Test Methods of Material Stabilized with Inorganic Binders for Highway Engineering. China Communications Press: Beijing, China, 2024.
- Mackiewicz, P.; Szydło, A. Viscoelastic parameters of asphalt mixtures identified in static and dynamic tests. Materials 2019, 12, 2084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ahmed, A.; Said, S.; Dinegdae, Y.; Lu, X. Experimental analysis and predictive modelling of linear viscoelastic response of asphalt mixture under dynamic shear loading. Constr. Build. Mater. 2022, 328, 127095. [Google Scholar] [CrossRef]
- Han, D.; Xi, Y.; Xie, Y.; Li, Z.; Zhao, Y. 3D Virtual reconstruction of asphalt mixture microstructure based on rigid body dynamic simulation. Int. J. Pavement Eng. 2023, 24, 2165654. [Google Scholar] [CrossRef]
- Ibrahim Hassanin Mohamed, A.; Giraldo-Londoño, O.; Deng, B.; Chen, Z.; Rath, P.; Buttlar, W.G. Preliminary Study on Multi-Scale Modeling of Asphalt Materials: Evaluation of Material Behavior through an RVE-Based Approach. Materials 2024, 17, 5041. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Gong, H.; Zhou, C.; Chen, J.; Huang, B. 3D multiscale modeling of asphalt pavement responses under coupled temperature–stress fields. J. Eng. Mech. 2022, 148, 04022010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; He, G.; Huang, M.; Han, D.; Zhu, H.; Zhao, Y. Measurement Performance Improvement of Buried Strain Sensors for Asphalt Pavement Using Mesoscale Finite Element Simulation. Sensors 2025, 25, 3754. https://doi.org/10.3390/s25123754
Hu H, He G, Huang M, Han D, Zhu H, Zhao Y. Measurement Performance Improvement of Buried Strain Sensors for Asphalt Pavement Using Mesoscale Finite Element Simulation. Sensors. 2025; 25(12):3754. https://doi.org/10.3390/s25123754
Chicago/Turabian StyleHu, Haiyang, Gang He, Man Huang, Dongdong Han, Hongzhou Zhu, and Yongli Zhao. 2025. "Measurement Performance Improvement of Buried Strain Sensors for Asphalt Pavement Using Mesoscale Finite Element Simulation" Sensors 25, no. 12: 3754. https://doi.org/10.3390/s25123754
APA StyleHu, H., He, G., Huang, M., Han, D., Zhu, H., & Zhao, Y. (2025). Measurement Performance Improvement of Buried Strain Sensors for Asphalt Pavement Using Mesoscale Finite Element Simulation. Sensors, 25(12), 3754. https://doi.org/10.3390/s25123754