Robust SAR Waveform Design for Extended Target in Spectrally Dense Environments
Abstract
1. Introduction
- Deterministic target model
- Stochastic target model
2. Problem Formation
3. Solving the Problem
3.1. Algometric Procedure
Algorithm 1: Solving procedure for |
Input decision variables , , and . |
Initialize , , , , , , e |
Form with , , and |
Find the closed-form solutions for and |
Form with and |
Repeat |
Construct the Lagrange duality |
Form and solve it. |
until stopping criterion is satisfied. |
output with maximum iteration step K. |
3.2. Convergence and Complexity Analysis
4. Numerical Examples
4.1. Theoretical Derivation Verification
4.1.1. Convergence Validation
4.1.2. Robustness Property
4.1.3. Optimality Condition
4.1.4. Spectral Compatibility
4.1.5. Time Consumption Comparison
4.1.6. Target Classification
4.2. Application to SAR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Globally Solved P 9 Leads to Global Convergence for P 8
Appendix A.2. Proof of Lemma 1
Appendix A.3. Proof of α†
References
- Villano, M.; Krieger, G.; Moreira, A. Nadir echo removal in synthetic aperture radar via waveform diversity and dual-focus postprocessing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 719–723. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Li, Y.; Qi, Y.; Yuan, X.; Liu, J.; Li, H. China’s Gaofen-3 satellite system and its application and prospect. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11019–11028. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Y.; Zhang, Z.; Wang, W.; Lv, Z.; Wei, T.; Wang, R. Analytic NLFM waveform design with harmonic decomposition for synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4513405. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Hu, J.; Shi, S.; Li, C.; Cheng, W.; Fang, G. An efficient algorithm based on frequency scaling for THz stepped-frequency SAR imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5225815. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z.; Zhang, T.; Li, L.; Li, H.; Dong, Z.; Zheng, P. An Improved Ultrahigh-Resolution Stepped-Frequency Spaceborne SAR Imaging Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3742–3754. [Google Scholar] [CrossRef]
- Wei, T.; Wang, W.; Zhang, Y.; Wang, R. A novel nonlinear frequency modulation waveform with low sidelobes applied to synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4515405. [Google Scholar] [CrossRef]
- Jin, G.; Deng, Y.; Wang, R.; Wang, W.; Wang, P.; Long, Y.; Zhang, Z.M.; Zhang, Y. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6155–6168. [Google Scholar] [CrossRef]
- Xie, Q.; Yang, J.; Liu, C.; Li, W. Low sidelobe quasi-orthogonal NLFM waveforms with reciprocating frequency modulation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4027805. [Google Scholar] [CrossRef]
- Bell, M.R. Information theory and radar waveform design. IEEE Trans. Inf. Theory 1993, 39, 1578–1597. [Google Scholar] [CrossRef]
- Li, Q.; Rothwell, E.J.; Chen, K.M.; Nyquist, D.P. Scattering center analysis of radar targets using fitting scheme and genetic algorithm. IEEE Trans. Antennas Propag. 1996, 44, 198–207. [Google Scholar]
- Xu, Z.; Zhu, J.; Xie, Z.; Fan, C.; Huang, X. MIMO Radar Robust Waveform-Filter Design for Extended Targets Based on Lagrangian Duality. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1021–1036. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, B.; Xie, Z.; Huang, X. Probabilistically Robust Design of Radar Waveform-Filter for Extended Target Detection in the Presence of Clutter. IEEE Trans. Signal Process. 2023, 71, 3267–3280. [Google Scholar] [CrossRef]
- Daniyan, A.; Lambotharan, S.; Deligiannis, A.; Gong, Y.; Chen, W.H. Bayesian multiple extended target tracking using labeled random finite sets and splines. IEEE Trans. Signal Process. 2018, 66, 6076–6091. [Google Scholar] [CrossRef]
- Meng, H.; Wei, Y.; Gong, X.; Liu, Y.; Wang, X. Radar waveform design for extended target recognition under detection constraints. Math. Probl. Eng. 2012, 2012, 289819. [Google Scholar] [CrossRef]
- Rogers, C.A.; Popescu, D.C. Compressed sensing MIMO radar system for extended target detection. IEEE Syst. J. 2020, 15, 1381–1389. [Google Scholar] [CrossRef]
- Yuxi, W.; Guoce, H.; Wei, L. Waveform design for radar and extended target in the environment of electronic warfare. J. Syst. Eng. Electron. 2018, 29, 48–57. [Google Scholar]
- Wu, Z.J.; Wang, C.X.; Li, Y.C.; Zhou, Z.Q. Extended target estimation and recognition based on multimodel approach and waveform diversity for cognitive radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5101014. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Liu, W.; Li, C.; Feng, L.; Chen, Y. Joint Design of SAR Waveform and Imaging Filters Based on Target Information Maximization. IEEE J. Sel. Top. Signal Process. 2023, 17, 416–430. [Google Scholar] [CrossRef]
- Zheng, H.; Jiu, B.; Liu, H. Waveform design based ECCM scheme against interrupted sampling repeater jamming for wideband MIMO radar in multiple targets scenario. IEEE Sensors J. 2021, 22, 1652–1669. [Google Scholar] [CrossRef]
- Gui, R.; Huang, B.; Wang, W.Q.; Sun, Y. Generalized ambiguity function for FDA radar joint range, angle and Doppler resolution evaluation. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Pillai, S.; Oh, H.; Youla, D.; Guerci, J. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inf. Theory 2000, 46, 577–584. [Google Scholar] [CrossRef]
- Guerci, J.R.; Pillai, S.U. Theory and application of optimum transmit-receive radar. In Proceedings of the Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037], Alexandria, VA, USA, 12 May 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 705–710. [Google Scholar]
- Garren, D.; Osborn, M.; Odom, A.; Goldstein, J.S.; Pillai, S.U.; Guerci, J. Enhanced target detection and identification via optimised radar transmission pulse shape. IEE Proc. Radar Sonar Navig. 2001, 148, 130–138. [Google Scholar] [CrossRef]
- Goodman, N.A.; Venkata, P.R.; Neifeld, M.A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEE J. Sel. Top. Signal Process. 2007, 1, 105–113. [Google Scholar] [CrossRef]
- Friedlander, B. Waveform design for MIMO radars. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1227–1238. [Google Scholar] [CrossRef]
- Chen, C.Y.; Vaidyanathan, P. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 2009, 57, 3533–3544. [Google Scholar] [CrossRef]
- Pillai, S.U.; Youla, D.; Oh, H.; Guerci, J.R. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. In Proceedings of the Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No. CH37020), Pacific Grove, CA, USA, 24–27 October 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, pp. 870–875. [Google Scholar]
- Karbasi, S.M.; Aubry, A.; De Maio, A.; Bastani, M.H. Robust transmit code and receive filter design for extended targets in clutter. IEEE Trans. Signal Process. 2015, 63, 1965–1976. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, P.; Liu, H.; Chen, Z.M. Robust Transceiver Design for Extended Target Detection in a Signal-Dependent Interference Scenario. IEEE Access 2020, 8, 122292–122303. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Z.; Liu, H.; Miao, P.; Wu, L. MIMO Radar Codes/Filter Bank Optimization Design in Clutter Environment. IEEE Trans. Instrum. Meas. 2022, 71, 8503315. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, Z.; Fan, C.; Huang, X. Probabilistically robust radar waveform design for extended target detection. IEEE Trans. Signal Process. 2022, 70, 4212–4224. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Martino, L.; Govoni, M.A. Phase-only radar waveform design for spectrally dense environments. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Cheng, Z.; He, Z.; Liao, B.; Fang, M. MIMO radar waveform design with PAPR and similarity constraints. IEEE Trans. Signal Process. 2017, 66, 968–981. [Google Scholar] [CrossRef]
- Cheng, Z.; Liao, B.; He, Z.; Li, Y.; Li, J. Spectrally compatible waveform design for MIMO radar in the presence of multiple targets. IEEE Trans. Signal Process. 2018, 66, 3543–3555. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Huang, Y.; Piezzo, M.; Farina, A. A new radar waveform design algorithm with improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1029–1038. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Govoni, M.A.; Martino, L. On the Design of Multi-Spectrally Constrained Constant Modulus Radar Signals. IEEE Trans. Signal Process. 2020, 68, 2231–2243. [Google Scholar] [CrossRef]
- Yu, X.; Alhujaili, K.; Cui, G.; Monga, V. MIMO radar waveform design in the presence of multiple targets and practical constraints. IEEE Trans. Signal Process. 2020, 68, 1974–1989. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, H.; Miao, P.; Wu, L. MIMO radar design for extended target detection in a spectrally crowded environment. IEEE Trans. Intell. Transp. Syst. 2021, 23, 14389–14398. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, L.; Liu, H. Robust Transceiver Design in the Presence of Eclipsing Loss for Spectrally Dense Environments. IEEE Syst. J. 2021, 15, 4334–4345. [Google Scholar] [CrossRef]
- Ding, M.; Li, Y.; Wei, J.; Zhu, E. Joint Design of OFDM-LFM Waveforms and Receive Filter for MIMO Radar in Spatial Heterogeneous Clutter. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3500105. [Google Scholar] [CrossRef]
- Tang, B.; Tang, J. Robust waveform design of wideband cognitive radar for extended target detection. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3096–3100. [Google Scholar]
- Yu, X.; Cui, G.; Kong, L.; Li, J.; Gui, G. Constrained waveform design for colocated MIMO radar with uncertain steering matrices. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 356–370. [Google Scholar] [CrossRef]
- Dinkelbach, W. On nonlinear fractional programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Zhang, F. The Schur Complement and Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Huang, Y.; Palomar, D.P. Randomized algorithms for optimal solutions of double-sided QCQP with applications in signal processing. IEEE Trans. Signal Process. 2014, 62, 1093–1108. [Google Scholar] [CrossRef]
- Ai, W.; Huang, Y.; Zhang, S. New results on Hermitian matrix rank-one decomposition. Math. Program. 2011, 128, 253–283. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.; Zhang, S. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 2010, 27, 20–34. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Liu, W.; Li, C.; Chen, Y. Information-Theoretic Approach to Joint Design of Waveform and Receiver Filter With Desired Cross-Correlation Properties for Imaging Radar. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5216712. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Zhang, Z.; Deng, Y.; Li, N.; Hou, L.; Xu, Z. First demonstration of airborne SAR with nonlinear FM chirp waveforms. IEEE Geosci. Remote Sens. Lett. 2016, 13, 247–251. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, J.; Liu, W.; Wang, S.; Li, C. High-resolution radar waveform design based on target information maximization. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3577–3587. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, X.; Li, D.; Xu, Y. On zero duality gap in nonconvex quadratic programming problems. J. Glob. Optim. 2012, 52, 229–242. [Google Scholar] [CrossRef]
- Nesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Aldayel, O.; Monga, V.; Rangaswamy, M. Tractable transmit MIMO beampattern design under a constant modulus constraint. IEEE Trans. Signal Process. 2017, 65, 2588–2599. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Platform height | 6 km | |
Antenna length | D | 2 m |
Effective radar velocity | v | 150 m/s |
Look angle | ||
Beam squint angle | ||
Center frequency | 5.3 GHz | |
Pulse duration | T | 1 |
Range Bandwidth | 100 MHz | |
Range sampling rate | 120 MHz | |
Azimuth sampling rate | 180 Hz | |
Number of range lines | 256 | |
Samples per range line | 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wu, F.; Gao, B.; Xu, G.; Wu, J.; Zhang, J. Robust SAR Waveform Design for Extended Target in Spectrally Dense Environments. Sensors 2025, 25, 3670. https://doi.org/10.3390/s25123670
Zhang R, Wu F, Gao B, Xu G, Wu J, Zhang J. Robust SAR Waveform Design for Extended Target in Spectrally Dense Environments. Sensors. 2025; 25(12):3670. https://doi.org/10.3390/s25123670
Chicago/Turabian StyleZhang, Rui, Fuwei Wu, Bing Gao, Ge Xu, Jianwei Wu, and Jiawei Zhang. 2025. "Robust SAR Waveform Design for Extended Target in Spectrally Dense Environments" Sensors 25, no. 12: 3670. https://doi.org/10.3390/s25123670
APA StyleZhang, R., Wu, F., Gao, B., Xu, G., Wu, J., & Zhang, J. (2025). Robust SAR Waveform Design for Extended Target in Spectrally Dense Environments. Sensors, 25(12), 3670. https://doi.org/10.3390/s25123670