Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
- 5.9 mL of pure HCl (32%, Sigma-Aldrich, St. Louis, MO, USA), which was diluted to 10 mL in ddH2O to obtain 6 M HCl;
- 4.9 mL of 32% HCl, which was diluted to 500 mL in ddH2O to prepare 0.1 M HCl;
- 0.6 mL of CH3COOH (99.8% purity, Merck, Darmstadt, Germany), which was diluted to 100 mL in ddH2O to get 0.1 M CH3COOH solution (AA);
- 7.7 g of CH3COONa (98.5% purity, Fluka Chemika, Seelze, Germany), which was added to 1 L in ddH2O and adjusted with pure CH3COOH (99.8%, Merck, New York, NY, USA) to obtain 0.1 M acetic buffer with pH = 5.6;
- 0.132 g of C6H8O6 (99.7% purity, Fischer Scientific, Loughborough, UK), which was dissolved in 250 mL of AA to prepare 0.003 M L-ascorbic acid (C6H8O6) solution (LAA);
- 132 mg of C6H8O6 (99.7% purity, Fischer Scientific, UK), which was dissolved to 250 mL in acetic buffer to get 3 mM LAA;
- 2.7 g of anhydrous 1.10-phenanthroline (99% purity, Merck, Darmstadt, Germany), which was mixed with 5 mL of 6 M HCl and further diluted to 500 mL in ddH2O to obtain 30 mM o-phen solution;
- 695 mg of ferrous (assay of Fe 86–90%) FeSO4·7H2O reagent (Merck, Germany), which was dissolved to 250 mL in 0.1 M HCl to prepare 10 mM Fe2+ stock solution;
- Working standard solutions of Fe2+ in a concentration range from 0.1 to 1 μM, which were made by diluting a proper amount of Fe2+ stock solution in ddH2O;
- 678 mg of crist. p.a. Fe3+ FeCl3·6H2O) reagent (Riedel de Haen, Seelze, Germany), which was dissolved in 250 mL of 0.1 M HCl solutions to prepare 10 mM Fe3+ stock solution;
- Working standard solutions of Fe3+ in a concentration range of 0.1–1 μM, which were made by diluting a proper amount of Fe3+ stock solution in ddH2O.
2.2. SPR-IDA and Ch-100 Resins Preparation
2.3. Diffusive Gradients in Thin Films (DGT) Coupled to Beam Deflection Spectrometry (BDS)
2.4. Sampling
2.5. Method
2.6. Theory
2.7. Experimental Setup
2.8. Optical Microscope
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Sample’s Preparation Protocol
3.2. Cavity for PB
3.3. Validation of the Method
3.4. Study of the Diffusion Process of Iron Redox Species into Resins
3.5. In Situ Application of Ch-100 and SPR-IDA Resins
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Yu, J.; Jiao, R.; Sun, H.; Xu, H.; He, Y.; Wang, D. Removal of Microorganic Pollutants in Aquatic Environment: The Utilization of Fe(VI). J. Environ. Manag. 2022, 316, 115328. [Google Scholar] [CrossRef] [PubMed]
- Measures, C.I.; Vink, S. Seasonal Variations in the Distribution of Fe and Al in the Surface Waters of the Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 1597–1622. [Google Scholar] [CrossRef]
- Tessier, A.; Couillard, Y.; Campbell, P.G.C.; Auclair, J.C. Modeling Cd Partitioning in Oxic Lake Sediments and Cd Concentrations in the Freshwater Bivalve Anodonta Grandis. Limnol. Oceanogr. 1993, 38, 1–17. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Hudson, R.J.M. The Geobiological Cycle of Trace Elements in Aquatic Systems: Redfield Revisited. In Chemical Processes in Lakes; John Wiley & Sons Ltd.: New York, NY, USA, 1985. [Google Scholar]
- Gregg, W.W.; Ginoux, P.; Schopf, P.S.; Casey, N.W. Phytoplankton and Iron: Validation of a Global Three-Dimensional Ocean Biogeochemical Model. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 3143–3169. [Google Scholar] [CrossRef]
- Mejia, J.; Roden, E.E.; Ginder-Vogel, M. Influence of Oxygen and Nitrate on Fe (Hydr)Oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling. Environ. Sci. Technol. 2016, 50, 3580–3588. [Google Scholar] [CrossRef]
- Laufer-Meiser, K.; Michaud, A.B.; Maisch, M.; Byrne, J.M.; Kappler, A.; Patterson, M.O.; Røy, H.; Jørgensen, B.B. Potentially Bioavailable Iron Produced through Benthic Cycling in Glaciated Arctic Fjords of Svalbard. Nat. Commun. 2021, 12, 1349. [Google Scholar] [CrossRef]
- Wang, D.H.; Zhang, H.H.; Lin, J.W.; Zhan, Y.H.; He, S.Q.; Liang, S.J.; Ji, Y.; Xi, X.Q. Adsorption of Phosphate from Aqueous Solutions on Sediments Amended with Magnetite-Modified Zeolite. Huanjing Kexue/Environ. Sci. 2018, 39, 5024–5035. [Google Scholar] [CrossRef]
- Li, X.; Di, W.; Weiwei, M.; Wenjun, L.; Tie, L.; Maoxu, Z. Kinetic Characterization of Reactivity of Iron Dissolution and Phosphorus Release in Surface Sediments of the Changjiang (Yangtze) River Estuary and the Adjacent East China Sea. Haiyang Xuebao 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Yang, W.-B.; Tang, H.; Han, C.; Ding, S.M. Distribution of Iron Forms and Their Correlations Analysis with Phosphorus Forms in the Sedimentary Profiles of Taihu Lake. Zhongguo Huanjing Kexue/China Environ. Sci. 2016, 36, 1145–1156. [Google Scholar]
- Xing, W.; Liu, G. Iron Biogeochemistry and Its Environmental Impacts in Freshwater Lakes. Fresenius Environ. Bull. 2011, 20, 1339–1345. [Google Scholar]
- Viana, L.F.; Crispim, B.d.A.; Sposito, J.C.V.; Melo, M.P.d.; Francisco, L.F.V.; Nascimento, V.A.d.; Barufatti, A. High Iron Content in River Waters: Environmental Risks for Aquatic Biota and Human Health. Ambient. Agua Interdiscip. J. Appl. Sci. 2021, 16, 1–20. [Google Scholar] [CrossRef]
- Laufer, K.; Nordhoff, M.; Røy, H.; Schmidt, C.; Behrens, S.; Jørgensen, B.B.; Kappler, A. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Appl. Environ. Microbiol. 2016, 82, 1433–1447. [Google Scholar] [CrossRef] [PubMed]
- Scholtysik, G.; Goldhammer, T.; Arz, H.W.; Moros, M.; Littke, R.; Hupfer, M. Geochemical Focusing and Burial of Sedimentary Iron, Manganese, and Phosphorus during Lake Eutrophication. Limnol. Oceanogr. 2022, 67, 768–783. [Google Scholar] [CrossRef]
- Dittrich, M.; Wehrli, B.; Reichert, P. Lake Sediments during the Transient Eutrophication Period: Reactive-Transport Model and Identifiability Study. Ecol. Modell. 2009, 220, 2751–2769. [Google Scholar] [CrossRef]
- Khaled, A.; Zhang, M.; Ervens, B. The Number Fraction of Iron-Containing Particles Affects OH, HO 2 and H 2 O 2 Budgets in the Atmospheric Aqueous Phase. Atmos. Chem. Phys. 2022, 22, 1989–2009. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, J.; Yue, G. Speciation Study of the Aqueous Fe-Cu-As-Sb-Bi-H2SO4 System and Prediction of Redox Potential in Copper Electrorefining from 25 °C to 70 °C. Chem. Eng. Sci. 2022, 255, 117656. [Google Scholar] [CrossRef]
- Moore, J.K.; Braucher, O. Observations of Dissolved Iron Concentrations in the World Ocean: Implications and Constraints for Ocean Biogeochemical Models. Biogeosci. Discuss. 2007, 4, 1241–1277. [Google Scholar] [CrossRef]
- Guan, D.-X.; He, S.-X.; Li, G.; Teng, H.H.; Ma, L.Q. Application of Diffusive Gradients in Thin-Films Technique for Speciation, Bioavailability, Modeling and Mapping of Nutrients and Contaminants in Soils. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3035–3079. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, Y.; Gaulier, C.; Luo, M.; Zhang, X.; Bratkic, A.; Davison, W.; Baeyens, W. Advances in Understanding Mobilization Processes of Trace Metals in Marine Sediments. Environ. Sci. Technol. 2020, 54, 15151–15161. [Google Scholar] [CrossRef]
- Gao, Y.; van de Velde, S.; Williams, P.N.; Baeyens, W.; Zhang, H. Two-Dimensional Images of Dissolved Sulfide and Metals in Anoxic Sediments by a Novel Diffusive Gradients in Thin Film Probe and Optical Scanning Techniques. TrAC Trends Anal. Chem. 2015, 66, 63–71. [Google Scholar] [CrossRef]
- Canfranc, E.; Abarca, A.; Sierra, I.; Marina, M. Determination of Iron and Molybdenum in a Dietetic Preparation by Flame AAS after Dry Ashing. J. Pharm. Biomed. Anal. 2001, 25, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.A.; Abdel-Lateef, A.M.; Mahmoud, H.H.; Helal, A.I. Determination of Trace Elements in Water and Sediment Samples from Ismaelia Canal Using Ion Chromatography and Atomic Absorption Spectroscopy. Chem. Speciat. Bioavailab. 2012, 24, 31–38. [Google Scholar] [CrossRef]
- Ramezanpour, M.; Raeisi, S.N.; Shahidi, S.A.; Ramezanpour, S. Trace Analysis of Pb(II) in Milk Samples by Fe3O4@SiO2@3-chloropropyltriethoxysilane@o-phenylendiamine Nanoparticles as an Unprecedented Adsorbent for Magnetic Dispersive Solid Phase Extraction. Micro Nano Lett. 2020, 15, 390–395. [Google Scholar] [CrossRef]
- Francisco, B.B.A.; Brum, D.M.; Cassella, R.J. Determination of Metals in Soft Drinks Packed in Different Materials by ETAAS. Food Chem. 2015, 185, 488–494. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Maffini, M.; Mangia, A.; Mucchino, C. Use of Experimental Design for Optimisation of the Cold Plasma ICP-MS Determination of Lithium, Aluminum and Iron in Soft Drinks and Alcoholic Beverages. Rapid Commun. Mass Spectrom. 2003, 17, 251–256. [Google Scholar] [CrossRef]
- Raju, O.V.; Prasad, P.; Varalakshmi, V.; Reddy, Y. Determination of Heavy Metals in Ground Water By Icp-Oes in Selected Coastal Area of Spsr Nellore District, Andhra Pradesh, India. Int. J. Innov. Res. Sci. Eng. Technol. 2014, II, 78–81. [Google Scholar] [CrossRef]
- Sarzanini, C. Liquid Chromatography: A Tool for the Analysis of Metal Species. J. Chromatogr. A 1999, 850, 213–228. [Google Scholar] [CrossRef]
- Rivera, S.M.; Canela-Garayoa, R. Analytical Tools for the Analysis of Carotenoids in Diverse Materials. J. Chromatogr. A 2012, 1224, 1–10. [Google Scholar] [CrossRef]
- Proch, J.; Niedzielski, P. Iron Species Determination by High Performance Liquid Chromatography with Plasma Based Optical Emission Detectors: HPLC–MIP OES and HPLC–ICP OES. Talanta 2021, 231, 122403. [Google Scholar] [CrossRef]
- Tangen, G.; Wickstrøm, T.; Lierhagen, S.; Vogt, R.; Lund, W. Fractionation and Determination of Aluminum and Iron in Soil Water Samples Using SPE Cartridges and ICP-AES. Environ. Sci. Technol. 2002, 36, 5421–5425. [Google Scholar] [CrossRef]
- Beltrán, B.G.; Ramos-Sanchez, V.; Chávez-Flores, D.; Rodríguez-Maese, R.; Palacio, E. Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) Method Validation: Determination of Heavy Metals in Dietary Supplements. J. Chem. 2020, 2020, 8817393. [Google Scholar] [CrossRef]
- Borgese, L.; Zacco, A.; Bontempi, E.; Pellegatta, M.; Vigna, L.; Patrini, L.; Riboldi, L.; Rubino, F.M.; Depero, L.E. Use of Total Reflection X-Ray Fluorescence (TXRF) for the Evaluation of Heavy Metal Poisoning Due to the Improper Use of a Traditional Ayurvedic Drug. J. Pharm. Biomed. Anal. 2010, 52, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Fagbenro, A.A.; Yinusa, T.S.; Ajekiigbe, K.M.; Oke, A.O.; Obiajunwa, E.I. Assessment of Heavy Metal Pollution in Soil Samples from a Gold Mining Area in Osun State, Nigeria Using Proton-Induced X-Ray Emission. Sci. Afr. 2021, 14, e01047. [Google Scholar] [CrossRef]
- Das, S.; Ram, S.S.; Sudarshan, M.; Chakraborty, A.; Thatoi, H.N. Proton-Induced X-Ray Analysis of Soil and Water Samples From Chromite Mine Environment for Determination of Toxic Metal Ion Contamination. J. Appl. Spectrosc. 2019, 86, 270–275. [Google Scholar] [CrossRef]
- Wygant, B.R.; Lambert, T.N. Thin Film Electrodes for Anodic Stripping Voltammetry: A Mini-Review. Front. Chem. 2022, 9, 809535. [Google Scholar] [CrossRef]
- Segura, R.; Toral, M.I.; Arancibia, V. Determination of Iron in Water Samples by Adsorptive Stripping Voltammetry with a Bismuth Film Electrode in the Presence of 1-(2-Piridylazo)-2-Naphthol. Talanta 2008, 75, 973–977. [Google Scholar] [CrossRef]
- Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X. Chemiluminescence for Bioimaging and Therapeutics: Recent Advances and Challenges. Chem. Soc. Rev. 2020, 49, 6800–6815. [Google Scholar] [CrossRef]
- Seitz, W.R.; Hercules, D.M. Determination of Trace Amounts of Iron(II) Using Chemiluminescence Analysis. Anal. Chem. 1972, 44, 2143–2149. [Google Scholar] [CrossRef]
- Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M.L. Chiral Capillary Electrophoresis. TrAC Trends Anal. Chem. 2020, 124, 115807. [Google Scholar] [CrossRef]
- Wilson, J.M.; Carbonaro, R.F. Capillary Electrophoresis Study of Iron(II) and Iron(III) Polyaminocarboxylate Complex Speciation. Environ. Chem. 2011, 8, 295. [Google Scholar] [CrossRef]
- Karami, C.; Alizadeh, A.; Taher, M.A.; Hamidi, Z.; Bahrami, B. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid. J. Appl. Spectrosc. 2016, 83, 687–693. [Google Scholar] [CrossRef]
- Chen, W.-H.; Maheshwaran, S.; Park, Y.-K.; Ong, H.C. Iron-Based Electrode Material Composites for Electrochemical Sensor Application in the Environment: A Review. Sci. Total Environ. 2024, 953, 176128. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.; Brandao, G.; Dossantos, W.; Lemos, V.; Ganzarolli, E.; Bruns, R.; Ferreira, S. Automatic On-Line Pre-Concentration System Using a Knotted Reactor for the FAAS Determination of Lead in Drinking Water. J. Hazard. Mater. 2007, 141, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Tautkus, S.; Steponeniene, L.; Kazlauskas, R. Determination of Iron in Natural and Mineral Waters by Flame Atomic Absorption Spectrometry. J. Serbian Chem. Soc. 2004, 69, 393–402. [Google Scholar] [CrossRef]
- Kell, P.; Sidhu, R.; Qian, M.; Mishra, S.; Nicoli, E.-R.; D’Souza, P.; Tifft, C.J.; Gross, A.L.; Gray-Edwards, H.L.; Martin, D.R.; et al. A Pentasaccharide for Monitoring Pharmacodynamic Response to Gene Therapy in GM1 Gangliosidosis. eBioMedicine 2023, 92, 104627. [Google Scholar] [CrossRef]
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical Sensors and Devices for Heavy Metals Assay in Water: The French Groups’ Contribution. Front. Chem. 2014, 2, 19. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022; ISBN 1119334055. [Google Scholar]
- Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vitek, P.; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kizek, R. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide. Materials 2016, 9, 31. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Sensors for Environmental Monitoring. Strategy and Examples. Pure Appl. Chem. 2001, 73, 1969–1977. [Google Scholar] [CrossRef]
- Lin, M.; Hu, X.; Pan, D.; Han, H. Determination of Iron in Seawater: From the Laboratory to in Situ Measurements. Talanta 2018, 188, 135–144. [Google Scholar] [CrossRef]
- Lin, M.; Pan, D.; Zhu, Y.; Hu, X.; Han, H.; Wang, C.C. Dual-Nanomaterial Based Electrode for Voltammetric Stripping of Trace Fe(II) in Coastal Waters. Talanta 2016, 154, 127–133. [Google Scholar] [CrossRef]
- Kubyshkin, A.P. Photothermal Measurement of Bulk and Surface Absorption of Transparent Infrared Optical Elements. Opt. Eng. 1994, 33, 3214. [Google Scholar] [CrossRef]
- Commandré, M.; Roche, P. Characterization of Absorption by Photothermal Deflection. Thin Film. Opt. Syst. 1995, 49, 329–365. [Google Scholar]
- Soumya, S.; Arun Kumar, R.; Raj, V.; Swapna, M.S.; Sankararaman, S. Thermal Diffusivity of Molybdenum Oxide Nanowire Film: A Photothermal Beam Deflection Study. Opt. Laser Technol. 2021, 139, 106993. [Google Scholar] [CrossRef]
- Sell, J. Photothermal Investigations of Solids and Fluids, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0323154220. [Google Scholar]
- Li, B.; Welsch, E. Configuration Optimization and Sensitivity Comparison among Thermal Lens, Photothermal Deflection, and Interference Detection Techniques. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 28 September–1 October 1998; SPIE: Bellingham, WA, USA, 1999; Volume 3578, pp. 594–603. [Google Scholar]
- Zhang, X.; Li, B. Configuration Optimization of Photothermal Deflection for Measurement Sensitivity Enhancement. Rev. Sci. Instrum. 2018, 89, 24901. [Google Scholar] [CrossRef]
- Jackson, W.B.; Amer, N.M.; Boccara, A.C.; Fournier, D. Photothermal Deflection Spectroscopy and Detection. Appl. Opt. 1981, 20, 1333. [Google Scholar] [CrossRef]
- Budasheva, H.; Kravos, A.; Korte, D.; Bratkič, A.; Gao, Y.; Franko, M. Determination of Dissolved Iron Redox Species in Freshwater Sediment Using DGT Technique Coupled to BDS. Acta Chim. Slov. 2019, 66, 239–246. [Google Scholar] [CrossRef]
- Warnken, K.W.; Zhang, H.; Davison, W. Performance Characteristics of Suspended Particulate Reagent-Iminodiacetate as a Binding Agent for Diffusive Gradients in Thin Films. Anal. Chim. Acta 2004, 508, 41–51. [Google Scholar] [CrossRef]
- Ding, S.; Xu, D.; Sun, Q.; Yin, H.; Zhang, C. Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase. Environ. Sci. Technol. 2010, 44, 8169–8174. [Google Scholar] [CrossRef]
- Buckley, J.A. Preparation of Chelex-100 Resin for Batch Treatment of Sewage and River Water at Ambient PH and Alkalinity. Anal. Chem. 1985, 57, 1488–1490. [Google Scholar] [CrossRef]
- Lin, T.-S.; Nriagu, J.O. Thallium Speciation in River Waters with Chelex-100 Resin. Anal. Chim. Acta 1999, 395, 301–307. [Google Scholar] [CrossRef]
- Nomngongo, P.N.; Catherine Ngila, J.; Msagati, T.A.M.; Moodley, B. Preconcentration of Trace Multi-Elements in Water Samples Using Dowex 50W-X8 and Chelex-100 Resins Prior to Their Determination Using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). Phys. Chem. Earth Parts A/B/C 2013, 66, 83–88. [Google Scholar] [CrossRef]
- Leermakers, M.; Gao, Y.; Gabelle, C.; Lojen, S.; Ouddane, B.; Wartel, M.; Baeyens, W. Determination of High Resolution Pore Water Profiles of Trace Metals in Sediments of the Rupel River (Belgium) Using Det (Diffusive Equilibrium in Thin Films) and DGT (Diffusive Gradients in Thin Films) Techniques. Water. Air. Soil Pollut. 2005, 166, 265–286. [Google Scholar] [CrossRef]
- Korte, D.; Franko, M. Application of Complex Geometrical Optics to Determination of Thermal, Transport, and Optical Parameters of Thin Films by the Photothermal Beam Deflection Technique. J. Opt. Soc. Am. A 2015, 32, 61–74. [Google Scholar] [CrossRef]
- Korte, D.; Carraro, G.; Fresno, F.; Franko, M. Thermal Properties of Surface-Modified α-and ε-Fe 2 O 3 Photocatalysts Determined by Beam Deflection Spectroscopy. Int. J. Thermophys. 2014, 35, 2107–2114. [Google Scholar] [CrossRef]
- Swapna, M.N.S.; Korte, D.; Sankararaman, S.I. Unveiling the Role of the Beam Shape in Photothermal Beam Deflection Measurements: A 1D and 2D Complex Geometrical Optics Model Approach. Photonics 2022, 9, 991. [Google Scholar] [CrossRef]
- Pai, S.-C.; Whung, P.-Y.; Lai, R.-L. Pre-Concentration Efficiency of Chelex-100 Resin for Heavy Metals in Seawater: Part 1. Effects of PH and Salts on the Distribution Ratios of Heavy Metals. Anal. Chim. Acta 1988, 211, 257–270. [Google Scholar] [CrossRef]
- Franko, M.; Goljat, L.; Liu, M.; Budasheva, H.; Žorž Furlan, M.; Korte, D. Recent Progress and Applications of Thermal Lens Spectrometry and Photothermal Beam Deflection Techniques in Environmental Sensing. Sensors 2023, 23, 472. [Google Scholar] [CrossRef]
- Caputi, L.; Carradec, Q.; Eveillard, D.; Kirilovsky, A.; Pelletier, E.; Pierella Karlusich, J.J.; Rocha Jimenez Vieira, F.; Villar, E.; Chaffron, S.; Malviya, S.; et al. Community-Level Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochem. Cycles 2019, 33, 391–419. [Google Scholar] [CrossRef]
- Birchill, A.J.; Hartner, N.T.; Kunde, K.; Siemering, B.; Daniels, C.; González-Santana, D.; Milne, A.; Ussher, S.J.; Worsfold, P.J.; Leopold, K.; et al. The Eastern Extent of Seasonal Iron Limitation in the High Latitude North Atlantic Ocean. Sci. Rep. 2019, 9, 1435. [Google Scholar] [CrossRef]
- Geng, H.; Wang, F.; Yan, C.; Ma, S.; Zhang, Y.; Qin, Q.; Tian, Z.; Liu, R.; Chen, H.; Zhou, B.; et al. Rhizosphere Microbial Community Composition and Survival Strategies in Oligotrophic and Metal(Loid) Contaminated Iron Tailings Areas. J. Hazard. Mater. 2022, 436, 129045. [Google Scholar] [CrossRef]
- Wei, H.; Xu, L.; Su, J.; Liu, S.; Zhou, Z.; Li, X. Simultaneous Removal of Nitrogen, Phosphorus, and Organic Matter from Oligotrophic Water in a System Containing Biochar and Construction Waste Iron: Performances and Biotic Community Analysis. Environ. Res. 2024, 255, 119187. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, S.M.; Ghassabian, S. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability; IntechOpen Limited: London, UK, 2018; Volume 109. [Google Scholar]
- García-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S.J.; Banks, C.E. Recent Advances in Portable Heavy Metal Electrochemical Sensing Platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690. [Google Scholar] [CrossRef]
- Zhou, C.; van de Velde, S.; Baeyens, W.; Gao, Y. Comparison of Chelex Based Resins in Diffusive Gradients in Thin-Film for High Resolution Assessment of Metals. Talanta 2018, 186, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical Tests, P Values, Confidence Intervals, and Power: A Guide to Misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef]
- Sochaczewski, L.; Tych, W.; Davison, B.; Zhang, H. 2D DGT Induced Fluxes in Sediments and Soils (2D DIFS). Environ. Model. Softw. 2007, 22, 14–23. [Google Scholar] [CrossRef]
- Sochaczewski, Ł.; Davison, W.; Zhang, H.; Tych, W. Understanding Small-Scale Features in DGT Measurements in Sediments. Environ. Chem. 2009, 6, 477. [Google Scholar] [CrossRef]
- Zhang, H.; Davison, W.; Mortimer, R.J.G.; Krom, M.D.; Hayes, P.J.; Davies, I.M. Localised Remobilization of Metals in a Marine Sediment. Sci. Total Environ. 2002, 296, 175–187. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Zhang, Y.; Cai, Y.; Yin, H.; Yang, Z.; Li, Q.; Yuan, H. Availability and Diffusion Kinetic Process of Phosphorus in the Water–Sediment Interface Assessed by the High-Resolution DGT Technique. J. Soils Sediments 2021, 21, 3274–3288. [Google Scholar] [CrossRef]
- Morford, J.; Kalnejais, L.; Martin, W.; François, R.; Karle, I.-M. Sampling Marine Pore Waters for Mn, Fe, U, Re and Mo: Modifications on Diffusional Equilibration Thin Film Gel Probes. J. Exp. Mar. Bio. Ecol. 2003, 285, 85–103. [Google Scholar] [CrossRef]
- Bennett, W.W.; Teasdale, P.R.; Welsh, D.T.; Panther, J.G.; Stewart, R.R.; Price, H.L.; Jolley, D.F. Inorganic Arsenic and Iron (II) Distributions in Sediment Porewaters Investigated by a Combined DGT–Colourimetric DET Technique. Environ. Chem. 2011, 9, 31–40. [Google Scholar] [CrossRef]
- Nagakura, T.; Schubert, F.; Wagner, D.; Kallmeyer, J. Biological Sulfate Reduction in Deep Subseafloor Sediment of Guaymas Basin. Front. Microbiol. 2022, 13, 845250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, Z.; Hu, Q.; Liu, L.; Luo, K. Effects of Fe2+ and Fe3+ on Algal Proliferation in a Natural Mixed Algal Colony in Algae-Rich Raw Water in Southern China. J. Residuals Sci. Technol. 2016, 13, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Lueder, U.; Jørgensen, B.B.; Maisch, M.; Schmidt, C.; Kappler, A. Influence of Fe(III) Source, Light Quality, Photon Flux and Presence of Oxygen on Photoreduction of Fe(III)-Organic Complexes—Implications for Light-Influenced Coastal Freshwater and Marine Sediments. Sci. Total Environ. 2022, 814, 152767. [Google Scholar] [CrossRef] [PubMed]
- Daniel Chukwuemeka, O.; Innocent Onyebuchi, E. REDOX PROCESSES IN REGOLITH AQUIFERS AT ENUGU. Int. J. Earth Environ. Sci. 2021, 16, 16–43. [Google Scholar] [CrossRef]
- Korte, D.; Tomsič, G.; Bratkič, A.; Franko, M.; Budasheva, H. Determination of Iron in Environmental Water Samples by FIA-TLS. Acta Chim. Slov. 2019, 66, 814–820. [Google Scholar] [CrossRef]
Type of Gel | Parameters of Calibration Curves | LOD/LOQ, nM | ||
---|---|---|---|---|
With Cavity | Without Cavity | With Cavity | Without Cavity | |
SPR-IDA | y = 0.008x − 0.049 r2 = 0.997 | y = 0.003x − 0.050 r2 = 0.996 | 20/66 | 50/165 |
Ch-100 | y = 0.0038x − 0.005 r2 = 0.996 | y = 0.002x − 0.029 r2 = 0.995 | 40/132 | 80/264 |
Type of Gel | Cnominal, μM | 0.1 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
---|---|---|---|---|---|---|---|
SPR-IDA/Ch-100 | Ccalculated, μM | 0.118/0.099 | 0.187/0.196 | 0.403/0.388 | 0.594/0.606 | 0.805/0.773 | 1.003/0.980 |
Accuracy, % | 118/99 | 94/98 | 101/97 | 99/100 | 101/97 | 100/98 | |
Precision (RSD), % | 10/1 | 6/3 | 4/3 | 5/5 | 4/4 | 4/6 |
Period of Time | 1 Day | 9 Days | 11 Days |
---|---|---|---|
SPR-IDA/Ch-100 | SPR-IDA/Ch-100 | SPR-IDA/Ch-100 | |
r2 | 0.996/0.994 | 0.996/0.995 | 0.996/0.995 |
Slope, μV nM−1 | 0.0076/0.0027 | 0.0071/0.0025 | 0.0076/0.0024 |
SD, μV L nmol−1 | 0.0003/0.0001 | 0.0003/0.0003 | 0.0003/0.0002 |
Lower limit 95 CI | 0.0066/0.0023 | 0.0062/0.0021 | 0.0069/0.0021 |
Upper limit 95 CI | 0.0085/0.0031 | 0.0080/0.0029 | 0.0083/0.0026 |
Intercept, μV | 0.59/0.0289 | 0.68/0.0291 | 0.58/0.0286 |
SD, μV | 0.21/0.0093 | 0.20/0.0088 | 0.15/0.0095 |
Lower limit 95 CI | 0.02/0.008 | 0.12/0.009 | 0.12/0.007 |
Upper limit 95 CI | 1.17/0.056 | 1.24/0.057 | 0.97/0.055 |
Added Concentration, μM | Measured Concentration, μM | Yield, % |
---|---|---|
SPR-IDA/Ch-100 | SPR-IDA/Ch-100 | |
0.1 | 0.081/0.095 | 81 ± 8/95 ± 2 |
0.2 | 0.176/0.196 | 88 ± 10/98 ± 3 |
0.4 | 0.382/0.384 | 96 ± 9/ 96 ± 3 |
0.6 | 0.577/0.580 | 96 ± 3/97 ± 4 |
0.8 | 0.792/0.784 | 99 ± 4/98 ± 5 |
1.0 | 0.992/0.965 | 99 ± 3/96 ± 4 |
C, μM | SPR-IDA | Ch-100 | ||
---|---|---|---|---|
s, μm | D, mm2 s−1 | S, μm | D, mm2 s−1 | |
0 | 0 | 0.370 ± 0.005 | 0 | 0.117 ± 0.002 |
0.2 | 3.5 ± 0.1 | 0.374 ± 0.006 | 1.00 ± 0.02 | 0.119 ± 0.002 |
0.4 | 6.3 ± 0.2 | 0.378 ± 0.006 | 1.95 ± 0.04 | 0.122 ± 0.003 |
0.6 | 9.6 ± 0.3 | 0.384 ± 0.006 | 3.30 ± 0.06 | 0.125 ± 0.003 |
0.8 | 11.8 ± 0.4 | 0.390 ± 0.007 | 3.60 ± 0.09 | 0.126 ± 0.003 |
1.0 | 14.0 ± 0.5 | 0.394 ± 0.008 | 5.00 ± 0.11 | 0.131 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budasheva, H.; Swapna, M.N.S.; Bratkič, A.; Korte, D. Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater. Sensors 2025, 25, 3643. https://doi.org/10.3390/s25123643
Budasheva H, Swapna MNS, Bratkič A, Korte D. Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater. Sensors. 2025; 25(12):3643. https://doi.org/10.3390/s25123643
Chicago/Turabian StyleBudasheva, Hanna, Mohanachandran Nair Sindhu Swapna, Arne Bratkič, and Dorota Korte. 2025. "Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater" Sensors 25, no. 12: 3643. https://doi.org/10.3390/s25123643
APA StyleBudasheva, H., Swapna, M. N. S., Bratkič, A., & Korte, D. (2025). Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater. Sensors, 25(12), 3643. https://doi.org/10.3390/s25123643