Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors
Abstract
:1. Introduction
2. Analysis of the Pulse Radiation Characteristics of TEM Horn Antennas
3. Antenna Design
3.1. High-Gain Aperture Impedance
3.2. Stepped Impedance Taper
- (1)
- The horn’s axial length and the aperture’s circumscribed circle diameter are both 1 m.
- (2)
- The impedance at the junctions between each pair of plates is 50 Ω, 100 Ω, 150 Ω, 200 Ω, and 250 Ω, respectively.
- (3)
- The plate flare angles follow a “small-large-small” sequence. The characteristic impedance increases stepwise, changing slowly at the ends and rapidly in the middle.
- (4)
- To balance high peak field strength efficiency and low-frequency radiation, the fourth-section metal plate starts at 200 Ω and ends at 250 Ω impedance.
3.3. End Loading of the Antenna
4. The Performance and Analysis of Antenna Simulation
4.1. Port Characteristics Analysis
4.1.1. Impedance Bandwidth
4.1.2. Input Impedance Characteristics
4.2. Frequency-Domain Radiation Performance Analysis
4.2.1. Radiation Efficiency
4.2.2. Radiation Pattern
4.2.3. Current Distribution
4.3. Time-Domain Radiation Performance Analysis
4.3.1. Time-Domain Waveform of Pulse and Efficient Radiation Potential
4.3.2. Peak Field Strength Radiation Pattern
5. Antenna Testing
5.1. Measuring Instruments and Their Operating Methods
5.1.1. Wideband Electromagnetic Pulse Signal Source
5.1.2. Electric Field Sensor and Photoelectric Converter
5.1.3. Sensitivity Calibration Method
5.2. Testing Environment and Results
6. Discussion
7. Conclusions
- (1)
- Optimal far-field radiation characteristics emerge when the aperture impedance is maintained between 150~250 Ω. The four-section configuration shows superior performance in voltage standing wave ratio, input impedance stability, and low-frequency radiation efficiency compared to conventional linear horns. Notably, it achieves a 26.6% enhancement in peak radiation field intensity.
- (2)
- Vector analysis of terminal reflections informs the optimization of end loading strategies, effectively improving low-frequency radiation efficiency and peak field strength. The optimal load length correlates with the radiation pulse width, with 30 cm loading producing a 17.4% improvement in peak field, reaching 52.5 V/m compared to unloaded conditions.
- (3)
- Implementation of a fiber-optic based self-calibrating electric field measurement system enhances the accuracy of pulsed field characterization. Measurements reveal an efficient radiation potential of 489 V, a FWHM of 1.75 ns, a center frequency of 80 MHz, and a 10 dB bandwidth of 48~150 MHz. Radiation patterns show 43° E-plane and 83° H-plane beamwidths. The developed system is practically portable for electromagnetic pulse simulation applications and is viable for ground calibration testing of spaceborne wideband electromagnetic pulse sensors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R.T.; Smith, G.S. A Design Study for the Basic TEM Horn Antenna. IEEE Antennas Propag. Mag. 2004, 46, 86–92. [Google Scholar] [CrossRef]
- Bobreshov, A.M.; Uskov, G.K.; Lysenko, N.A.; Smuseva, K.V.; Sbitnev, N.S. An Ultrawideband TEM Horn with Dielectric Filling Characteristics Investigation with the Dependence on an Aperture Angle. Microw. Opt. Technol. Lett. 2022, 64, 1029–1035. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, N.; Song, R.; Ye, S.; Ji, Y.; Fang, G. Beam Shaping for Magnetoelectric Transverse Electromagnetic Horn by Using Gradient Refractive Index Lens. Microw. Opt. Technol. Lett. 2023, 65, 1728–1734. [Google Scholar] [CrossRef]
- Zoghi, M.; Hodjatkashani, F.; Lajevardi, M.E. An Ultra-Wideband Ridged Biconical Multibeam Antenna. IEEE Access 2023, 11, 58037–58045. [Google Scholar] [CrossRef]
- Miralles, E.; Schoenlinner, B.; Belenguer, A.; Esteban, H.; Ziegler, V. A 3-D Printed PCB Integrated TEM Horn Antenna. Radio Sci. 2019, 54, 158–165. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Dou, W. Ultrawideband 3-D Printed Endfire TEM Horn Antenna Mounted on a Cylinder Conductor. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2022–2026. [Google Scholar] [CrossRef]
- Bobreshov, A.M.; Uskov, G.K.; Kretov, P.A.; Sbitnev, N.S. Ultrawideband TEM Horn with Inhomogeneous Dielectric Medium. Microw. Opt. Technol. Lett. 2021, 63, 581–586. [Google Scholar] [CrossRef]
- Cazden, J.A.; Elmansouri, M.A.; Filipovic, D.S. Wideband Miniaturized Dual-Polarized TEM Horn. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 483–484. [Google Scholar]
- Kaloshin, V.A.; Le, N.T. 2D-Periodic Over-Wave-Range Antenna Array of TEM Horns with a Feeder. J. Commun. Technol. Electron. 2020, 65, 1140–1146. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhao, Y.; Zuo, S.; Yang, L.; Ji, L.-Y.; Fu, G. A Broadband Horizontally Polarized Omnidirectional Antenna for VHF Application. IEEE Trans. Antennas Propag. 2018, 66, 2229–2235. [Google Scholar] [CrossRef]
- Osaretin, I.A.; Torres, A.; Chen, C.-C. A Novel Compact Dual-Linear Polarized UWB Antenna for VHF/UHF Applications. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 145–148. [Google Scholar] [CrossRef]
- Kaddour, A.-S.; Bories, S.; Bellion, A.; Delaveaud, C. Frequency Reconfigurable Low-Profile UWB Magneto-Electric Dipole in VHF Band. IEEE Access 2021, 9, 61269–61282. [Google Scholar] [CrossRef]
- Ding, X.; Wang, B.-Z.; Ge, G.-D.; Wang, D. A Broadband VHF/UHF Double-Whip Antenna. IEEE Trans. Antennas Propag. 2012, 60, 719–724. [Google Scholar] [CrossRef]
- Mirmozafari, M.; Ma, R.; Dagefu, F.T.; Behdad, N. A Compact Wideband Multi-Beam Antenna for VHF/UHF Directional Networking Applications. IEEE Trans. Antennas Propag. 2022, 70, 10113–10122. [Google Scholar] [CrossRef]
- Gao, X.; Shen, Z.; Hua, C. Conformal VHF Log-Periodic Balloon Antenna. IEEE Trans. Antennas Propag. 2015, 63, 2756–2761. [Google Scholar] [CrossRef]
- Umbarkar, S.B.; Mangalvedekar, H.A.; Bindu, S.; Sharma, A.; Saroj, P.C.; Mittal, K.C. Analysis of HTEM Horn-Type Antenna for High-Power Impulse Radiation Applications. IEEE Trans. Plasma Sci. 2014, 42, 3288–3294. [Google Scholar] [CrossRef]
- Yadav, S.V.; Chittora, A. A Compact ultra-Wideband transverse Electromagnetic Mode Horn Antenna for High Power Microwave Applications. Microw. Opt. Technol. Lett. 2021, 63, 264–270. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Z.; Duan, C.; Wang, L.; Wei, Y.; Li, K.; Li, X.; Cao, B. Design of a High-Power Nanosecond Electromagnetic Pulse Radiation System for Verifying Spaceborne Detectors. Sensors 2024, 24, 6406. [Google Scholar] [CrossRef]
- Ostashev, V.E.; Ul’Yanov, A.V.; Fedorov, V.M. Energy Conversion Efficiency in an Ultrawideband Pulse Emitter. J. Commun. Technol. Electron. 2020, 65, 234–238. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Y.; Zhao, M.; Wang, P. Optimization design of EMP radiation antenna based on TEM horn. High Power Laser Part. Beams 2024, 36, 043012–043017. [Google Scholar] [CrossRef]
- Efremov, A.M.; Koshelev, V.I.; Kovalchuk, B.M.; Plisko, V.V.; Sukchushin, K.N. High-Power Sources of Ultra-Wideband Radiation with Subnanosecond Pulse Lengths. Instrum. Exp. Tech. 2011, 54, 70–76. [Google Scholar] [CrossRef]
- Fedorov, V.M.; Efanov, M.; Ostashev, V.Y.; Tarakanov, V.; Ul’Yanov, A.V. Antenna Array with TEM-Horn for Radiation of High-Power Ultra Short Electromagnetic Pulses. Electronics 2021, 10, 1011. [Google Scholar] [CrossRef]
- Garnov, S.V.; Bulgakova, V.V.; Dolmatov, T.V.; Ushakov, A.A.; Bukin, V.V. Generation of Rectangular Nanosecond Electromagnetic Pulses with a Picosecond Rise Front. Dokl. Phys. 2023, 68, 366–369. [Google Scholar] [CrossRef]
- Farr, E.G.; Baum, C.E. A Simple Model of Small-Angle TEM Horns. Sens. Simul. Notes 1992, 340, 1–20. [Google Scholar]
- Zhu, S.; Yi, C.; Chen, C.; Shi, Y.; Zheng, L.; Xia, W.; Xie, J. Radiation mechanism analysis and optimized design of TEM horn antennas. High Power Laser Part. Beams 2013, 25, 2368–2372. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Cheng, Y.; Wu, W.; Guo, J.; Zhao, M. Pulse Electric Field Measurement System with Sensitivity Self-calibration Based on Optical Fiber Transmission. High. Volt. Eng. 2021, 47, 1478–1484. [Google Scholar] [CrossRef]
X | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Lx (cm) | 12.0 | 25.0 | 15.0 | 35.0 | 25.0 |
Wx (cm) | 12.0 | 17.2 | 37.0 | 63.3 | 45.7 |
Hx (cm) | 2.0 | 7.0 | 22.0 | 77.4 | 88.9 |
Zc (Ω) | 50 | 100 | 150 | 200 | 250 |
E-Plane Beamwidth | H-Plane Beamwidth | Front-to-Back Ratio | |
---|---|---|---|
Linear horn | 41.9° | 78.6° | 7.6 dB |
Exponential horn | 49.7° | 85.9° | 6.4 dB |
Four-section horn | 41.6° | 83.7° | 8.6 dB |
Four-section hornend-loaded 10 cm | 40.0° | 76.5° | 8.4 dB |
Four-section horn end-loaded 30 cm | 45.3° | 68.8° | 6.5 dB |
Four-section horn end-loaded 50 cm | 54.3° | 68.5° | 5.6 dB |
Ref. | Type of Antenna | Approximate Size | Radiated Impulse Signal | ||
---|---|---|---|---|---|
Rise Time | Pulse Width | Bandwidth | |||
[18] | Reflector antenna with TEM horn feed | 20 m × 20 m × 25 m | 1.9 ns | 2.5 ns | 8~205 MHz |
[19] | 4-element TEM horn array | 0.24 m × 0.24 m × 0.3 m | 30 ps | ~1 ns | / |
[20] | TEM horn antenna | 3 m × 3 m × 3 m | 2.5 ns | 20.9 ns | <300 MHz |
[21] | 16-element TEM horn array | 1 m × 1 m × 2 m | 0.12 ns | 0.18 ns | / |
[22] | 4-element TEM horn array | 0.4 m × 0.4 m × 0.6 m | 60 ps | 80 ps | 0.1~6 GHz |
[23] | TEM horn antenna | 0.3 m × 0.3 m × 0.3 m | <30 ps | ~1 ns | / |
This paper | Segmented TEM horn antenna | 1 m × 1 m × 1 m | 0.87 ns | 1.75 ns | 48~150 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wei, Y.; Wang, Y.; Duan, C.; Wang, L.; Li, Z.; Li, X.; Li, X.; Cao, B. Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors. Sensors 2025, 25, 3599. https://doi.org/10.3390/s25123599
Zhang T, Wei Y, Wang Y, Duan C, Wang L, Li Z, Li X, Li X, Cao B. Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors. Sensors. 2025; 25(12):3599. https://doi.org/10.3390/s25123599
Chicago/Turabian StyleZhang, Tianchi, Yongli Wei, Yuan Wang, Changjiao Duan, Lihua Wang, Zongxiang Li, Xiao Li, Xin Li, and Baofeng Cao. 2025. "Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors" Sensors 25, no. 12: 3599. https://doi.org/10.3390/s25123599
APA StyleZhang, T., Wei, Y., Wang, Y., Duan, C., Wang, L., Li, Z., Li, X., Li, X., & Cao, B. (2025). Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors. Sensors, 25(12), 3599. https://doi.org/10.3390/s25123599