Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Microfluidic Chip
2.2. Microfluidic Chip Flow Test
2.3. Performance Comparison of Developed We-Voltamostat Device with Standard Instrument
2.4. Dummy Cell Test
2.5. Accuracy Test
2.6. Selectivity and Stability Test
2.7. Sweat Sodium Measurement During Physical Exercise
- [Na+] is the sodium ion concentration (typically expressed in mmol/L);
- I is the measured current (in nA or μA);
- a, b, c are empirically determined calibration coefficients;
- n is the degree of the polynomial fit (commonly 1 for a linear model, or 2–3 for nonlinear models).
3. Results and Discussion
3.1. Flow Test
3.2. Calibration Test
3.3. Validation of the We-Voltamostat, Including Accuracy, Selectivity, and Stability
3.3.1. Accuracy
3.3.2. Selectivity and Stability
3.4. Real-Time Sweat Sodium Monitoring
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WE | Working electrode |
CE | Counter electrode |
RE | Reference Electrode |
NaCI | Sodium Chloride |
KCI | Potassium Chloride |
CaCI2 | Calcium chloride |
mM | Milimolar |
ICC | Intraclass correlation coefficient |
CV | Coefficient of variation |
HSD | Honestly significant difference |
SD | Standard deviation |
RC | Resistor-capacitor |
nA | Nano ampere |
References
- Ji, W.; Zhu, J.; Wu, W.; Wang, N.; Wang, J.; Wu, J.; Wu, Q.; Wang, X.; Yu, C.; Wei, G.; et al. Wearable sweat biosensors refresh personalized health/medical diagnostics. Research 2021, 2021, 9757126. [Google Scholar] [CrossRef] [PubMed]
- Moonen, E.J.; Haakma, J.R.; Peri, E.; Pelssers, E.; Mischi, M.; den Toonder, J.M. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. View 2020, 1, 20200077. [Google Scholar] [CrossRef]
- Gao, F.; Liu, C.; Zhang, L.; Liu, T.; Wang, Z.; Song, Z.; Cai, H.; Fang, Z.; Chen, J.; Wang, J.; et al. Wearable and flexible electrochemical sensors for sweat analysis: A review. Microsyst. Nanoeng. 2023, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.F.A.; Sabani, N.; Johari, S.; Manaf, A.A.; Wahab, A.A.; Zakaria, Z.; Noor, A.M. A comprehensive review of the recent developments in wearable sweat-sensing devices. Sensors 2022, 22, 7670. [Google Scholar] [CrossRef]
- Smith, C.J.; Havenith, G. Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur. J. Appl. Physiol. 2011, 111, 1391–1404. [Google Scholar] [CrossRef]
- Xing, Z.; Hui, J.; Lin, B.; Wu, Z.; Mao, H. Recent advances in wearable sensors for the monitoring of sweat: A comprehensive tendency summary. Chemosensors 2023, 11, 470. [Google Scholar] [CrossRef]
- Coull, N.A.; West, A.M.; Hodder, S.G.; Wheeler, P.; Havenith, G. Body mapping of regional sweat distribution in young and older males. Eur. J. Appl. Physiol. 2021, 121, 109–125. [Google Scholar] [CrossRef]
- Liu, H.; Gu, Z.; Zhao, Q.; Li, S.; Ding, X.; Xiao, X.; Xiu, G. Printed circuit board integrated wearable ion-selective electrode with potential treatment for highly repeatable sweat monitoring. Sens. Actuators B Chem. 2022, 355, 131102. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y.J.; Han, D.; Zhu, H.C.; Xue, C.D.; Chui, H.C.; Cao, T.; Qin, K.R. A capillary-evaporation micropump for real-time sweat rate monitoring with an electrochemical sensor. Micromachines 2019, 10, 457. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A review on flexible wearables–Recent developments in non-invasive continuous health monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. Npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Huang, J.; Liu, Y.; Peng, J.; Chen, S.; Song, K.; Ouyang, X.; Cheng, H.; Wang, X. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. Lab Chip 2020, 20, 2635–2645. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, P.; Ramos-Lorente, C.E.; Martínez-Olmos, A.; Carvajal, M.A.; Ortega-Muñoz, M.; de Orbe-Payá, I.; Hernández-Mateo, F.; Santoyo-González, F.; Capitán-Vallvey, L.F.; Palma, A.J.; et al. Wireless wearable wristband for continuous sweat pH monitoring. Sens. Actuators B Chem. 2021, 327, 128948. [Google Scholar] [CrossRef]
- Jain, V.; Ochoa, M.; Jiang, H.; Rahimi, R.; Ziaie, B. A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification. Microsyst. Nanoeng. 2019, 5, 29. [Google Scholar] [CrossRef]
- Wicaksono, I.; Tucker, C.I.; Sun, T.; Guerrero, C.A.; Liu, C.; Woo, W.M.; Pence, E.J.; Dagdeviren, C. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. Npj Flex. Electron. 2020, 4, 1–3. [Google Scholar] [CrossRef]
- Ding, L.; Yang, X.; Gao, Z.; Effah, C.Y.; Zhang, X.; Wu, Y.; Qu, L. A holistic review of the state-of-the-art microfluidics for exosome separation: An overview of the current status, existing obstacles, and future outlook. Small 2021, 17, 2007174. [Google Scholar] [CrossRef]
- Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016. Electroanalysis 2016, 28, 1242–1249. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef]
- Elvira, K.S.; Gielen, F.; Tsai, S.S.; Nightingale, A.M. Materials and methods for droplet microfluidic device fabrication. Lab Chip 2022, 22, 859–875. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ishihara, T.; Kuwabara, K.; Amano, T.; Togo, H. Wearable microfluidic sensor for the simultaneous and continuous monitoring of local sweat rates and electrolyte concentrations. Micromachines 2022, 13, 575. [Google Scholar] [CrossRef]
- Annabestani, M.; Esmaeili-Dokht, P.; Fardmanesh, M. A novel, low cost, and accessible method for rapid fabrication of the modifiable microfluidic devices. Sci. Rep. 2020, 10, 16513. [Google Scholar] [CrossRef] [PubMed]
- Narayanamurthy, V.; Jeroish, Z.E.; Bhuvaneshwari, K.S.; Bayat, P.; Premkumar, R.; Samsuri, F.; Yusoff, M.M. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis. RSC Adv. 2020, 10, 11652–11680. [Google Scholar] [CrossRef] [PubMed]
- Steijlen, A.S.; Jansen, K.M.; Bastemeijer, J.; French, P.J.; Bossche, A. Low-cost wearable fluidic sweat collection patch for continuous analyte monitoring and offline analysis. Anal. Chem. 2022, 94, 6893–6901. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, Y.; Gu, Y.; Li, T.; Luo, H.; Li, L.H.; Zhang, T. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode. Anal. Chem. 2017, 89, 10224–10231. [Google Scholar] [CrossRef]
- Wu, L.; Guo, Z.; Liu, W. Surface behaviors of droplet manipulation in microfluidics devices. Adv. Colloid Interface Sci. 2022, 308, 102770. [Google Scholar] [CrossRef]
- Adams, S.D.; Doeven, E.H.; Quayle, K.; Kouzani, A.Z. MiniStat: Development and evaluation of a mini-potentiostat for electrochemical measurements. IEEE Access 2019, 7, 31903–31912. [Google Scholar] [CrossRef]
- Anshori, I.; Mufiddin, G.F.; Ramadhan, I.F.; Ariasena, E.; Harimurti, S.; Yunkins, H.; Kurniawan, C. Design of smartphone-controlled low-cost potentiostat for cyclic voltammetry analysis based on ESP32 microcontroller. Sens. Bio-Sens. Res. 2022, 36, 100490. [Google Scholar] [CrossRef]
- Pungjunun, K.; Yakoh, A.; Chaiyo, S.; Siangproh, W.; Praphairaksit, N.; Chailapakul, O. Smartphone-based electrochemical analysis integrated with NFC system for the voltammetric detection of heavy metals using a screen-printed graphene electrode. Microchim. Acta 2022, 189, 191. [Google Scholar] [CrossRef]
- Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: A review. J. R. Soc. Interface 2019, 16, 20190217. [Google Scholar] [CrossRef]
- Brothers, M.C.; DeBrosse, M.; Grigsby, C.C.; Naik, R.R.; Hussain, S.M.; Heikenfeld, J.; Kim, S.S. Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 2019, 52, 297–306. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Noor, A.M.; Sabani, N.; Zakaria, Z.; Wahab, A.A.; Manaf, A.A.; Johari, S. We-VoltamoStat: A wearable potentiostat for voltammetry analysis with a smartphone interface. HardwareX 2023, 15, e00441. [Google Scholar] [CrossRef] [PubMed]
- Goedecke, N.; Eijkel, J.; Manz, A. Evaporation driven pumping for chromatography application. Lab Chip 2002, 2, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Vamos, I.; Kertesz, V. HunStat–a simple and low-cost potentiostat for analytical and educational purposes. Anal. Methods 2024, 16, 4198–4204. [Google Scholar] [CrossRef] [PubMed]
- Caux, M.; Achit, A.; Var, K.; Boitel-Aullen, G.; Rose, D.; Aubouy, A.; Argentieri, S.; Campagnolo, R.; Maisonhaute, E. PassStat, a simple but fast, precise and versatile open source potentiostat. HardwareX 2022, 11, e00290. [Google Scholar] [CrossRef]
- Baker, L.B. Sweating rate and sweat sodium concentration in athletes: A review of methodology and intra/interindividual variability. Sports Med. 2017, 47, 111–128. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.; Wang, Q.; Reichardt, K. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. Catena 2009, 79, 72–82. [Google Scholar] [CrossRef]
- Setiyono, R.; Lestari, T.F.; Anggraeni, A.; Hartati, Y.W.; Bahti, H.H. UnpadStat design: Portable potentiostat for electrochemical sensing measurements using screen printed carbon electrode. Micromachines 2023, 14, 268. [Google Scholar] [CrossRef]
- Dobbelaere, T.; Vereecken, P.M.; Detavernier, C. A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX 2017, 2, 34–49. [Google Scholar] [CrossRef]
- Lee, D.K.; In, J.; Lee, S. Standard deviation and standard error of the mean. Korean J. Anesthesiol. 2015, 68, 220–223. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Bu1hlmann, P. Selectivity of Potentiometric Ion Sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, P.; Shirreffs, S.M. Implications of active lifestyles and environmental factors for water needs and consequences of failure to meet those needs. Nutr. Rev. 2015, 73, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Schazmann, B.; Morris, D.; Slater, C.; Beirne, S.; Fay, C.; Reuveny, R.; Moyna, N.; Diamond, D. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Anal. Methods 2010, 2, 342–348. [Google Scholar] [CrossRef]
- Pirovano, P.; Dorrian, M.; Shinde, A.; Donohoe, A.; Brady, A.J.; Moyna, N.M.; Wallace, G.; Diamond, D.; McCaul, M. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020, 219, 121145. [Google Scholar] [CrossRef] [PubMed]
- Buono, M.J.; Claros, R.; DeBoer, T.; Wong, J. Na+ secretion rate increases proportionally more than the Na+ reabsorption rate with increases in sweat rate. J. Appl. Physiol. 2008, 105, 1044–1048. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Liu, Z.; Yuan, W.; Wu, X.; Lu, Y.; Low, S.S.; Liu, J.; Zhu, L.; Ji, D.; et al. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis. Adv. Mater. Technol. 2019, 4, 1800658. [Google Scholar] [CrossRef]
- Neves, L.B.; Afonso, I.S.; Nobrega, G.; Barbosa, L.G.; Lima, R.A.; Ribeiro, J.E. A Review of Methods to Modify the PDMS Surface Wettability and Their Applications. Micromachines 2024, 15, 670. [Google Scholar] [CrossRef]
- Presta, V.; Ambrosini, L.; Carubbi, C.; Masselli, E.; Mirandola, P.; Arcari, M.L.; Gobbi, G.; Vitale, M. Different waters for different performances: Can we imagine sport-related natural mineral spring waters? Water 2021, 13, 166. [Google Scholar] [CrossRef]
- Al Farisi, M.S.; Wang, Y.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Facile In-Tube-Center Packaging of Flexible Airflow Rate Microsensor for Simultaneous Respiration and Heartbeat Measurement. IEEE Sens. J. 2023, 23, 12626–12633. [Google Scholar]
- Al Farisi, M.S.; Okazaki, J.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Non-contact sensor module for rapid detection of extravasation during intravenous drug administration. Biomed. Microdevices 2024, 26, 44. [Google Scholar] [CrossRef]
Setting Parameter | Bottom Layer | Normal Layer | Bottom Retract Speed | Normal Retract Speed |
---|---|---|---|---|
Time Exposure (s) | 12 | 2.5 | - | - |
Lift Distance (mm) | 5 | 5 | - | - |
Speed (mm/min) | 50 | 50 | 150 | 190 |
mM | Current Measurement (nA) | Percentage Error (%) | Mean Difference (nA) | |
---|---|---|---|---|
Metrohm | We-Voltamostat | |||
Average | ||||
1 | 3.252 | −9.054 | 37.8 | 12.306 |
10 | 46.881 | 37.203 | 14.6 | 9.678 |
50 | 91.825 | 80.586 | 12.2 | 11.239 |
100 | 121.465 | 114.126 | 6 | 7.339 |
150 | 141.76 | 127.624 | 9.9 | 14.136 |
200 | 151.221 | 135.78 | 10.2 | 15.441 |
250 | 156.882 | 146.95 | 6.3 | 9.932 |
Metrohm Instrument—We-VoltamoStat | |
---|---|
Mean difference (nA) | 11.566 |
SD of differences (nA) | 3.285 |
SEM | 1.469 |
95% CI of difference (nA) | 5.128–17.996 |
ICC | 0.998 |
Sign. (2-tailed) | 0.0014 |
t | 7.873 |
CV (%) | 3.518 |
Concentration (mM) | Target Ion (A) | Interference Ions (B) | Mean Differences (A − B) | SEM | SD A | SD B |
---|---|---|---|---|---|---|
10 mM | Combination all ions | 14.305 | 1.7142 | 1.233 | 3.428 | |
118.580 | 3.5405 | 4.081 | ||||
147.548 | 2.9386 | 5.877 | ||||
50 mM | Combination all ions | 23.773 | 0.4624 | 4.339 | 2.813 | |
106.9358 | 1.4066 | 0.925 | ||||
143.838 | 2.1695 | 1.352 | ||||
100 mM | Combination all ions | 26.442 | 0.1688 | 2.613 | 4.746 | |
112.956 | 2.3729 | 0.338 | ||||
152.893 | 1.3065 | 0.788 | ||||
150 mM | Combination all ions | 7.294 | 1.0129 | 3.182 | 2.302 | |
111.592 | 1.1509 | 2.026 | ||||
150.999 | 3.3026 | 6.605 | ||||
200 mM | Combination all ions | 8.222 | 0.655 | 1.520 | 1.937 | |
109.786 | 0.968 | 4.648 | ||||
152.873 | 0.760 | 1.309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, A.M.; Al Farisi, M.S.; Mazalan, M.; Ibrahim, N.F.A.; Wahab, A.A.; Zakaria, Z.; Rusli, N.I.; Sabani, N.; Manaf, A.A. Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium. Sensors 2025, 25, 3467. https://doi.org/10.3390/s25113467
Noor AM, Al Farisi MS, Mazalan M, Ibrahim NFA, Wahab AA, Zakaria Z, Rusli NI, Sabani N, Manaf AA. Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium. Sensors. 2025; 25(11):3467. https://doi.org/10.3390/s25113467
Chicago/Turabian StyleNoor, Anas Mohd, Muhammad Salman Al Farisi, Mazlee Mazalan, Nur Fatin Adini Ibrahim, Asnida Abdul Wahab, Zulkarnay Zakaria, Nurul Izni Rusli, Norhayati Sabani, and Asrulnizam Abd Manaf. 2025. "Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium" Sensors 25, no. 11: 3467. https://doi.org/10.3390/s25113467
APA StyleNoor, A. M., Al Farisi, M. S., Mazalan, M., Ibrahim, N. F. A., Wahab, A. A., Zakaria, Z., Rusli, N. I., Sabani, N., & Manaf, A. A. (2025). Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium. Sensors, 25(11), 3467. https://doi.org/10.3390/s25113467