Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing
1. Introduction
2. An Overview of Published Articles
2.1. Structural Health Monitoring and Damage Detection
2.2. Sensor and Transducer Development
2.3. Signal Processing and Machine Learning
2.4. Cross-Disciplinary and Emerging Applications
3. Conclusions
Conflicts of Interest
List of Contributions
- 1.
- Xu, B.; Huang, J.; Jie, Y. Application of the Lamb Wave Mode of Acoustic Emission for Monitoring Impact Damage in Plate Structures. Sensors 2023, 23, 8611. https://doi.org/10.3390/s23208611.
- 2.
- Vechera, M.S.; Konovalov, S.I.; Konovalov, R.S.; Tsaplev, V.M.; Soloveva, A.D.; Lee, J. Assessment of the Influence of the Geometrical Shape of the Damper on the Efficiency of an Ultrasonic Operation Piezoelectric Transducer. Sensors 2023, 23, 9662. https://doi.org/10.3390/s23249662.
- 3.
- Xiong, L.; Qi, Z.-m. A Grating Interferometric Acoustic Sensor Based on a Flexible Polymer Diaphragm. Sensors 2023, 23, 9912. https://doi.org/10.3390/s23249912.
- 4.
- Shen, Y.; Wu, J.; Chen, J.; Zhang, W.; Yang, X.; Ma, H. Quantitative Detection of Pipeline Cracks Based on Ultrasonic Guided Waves and Convolutional Neural Network. Sensors 2024, 24, 1204. https://doi.org/10.3390/s24041204.
- 5.
- Brand, F.; Drese, K.S. Frequency-Resolved High-Frequency Broadband Measurement of Acoustic Longitudinal Waves by Laser-Based Excitation and Detection. Sensors 2024, 24, 1630. https://doi.org/10.3390/s24051630.
- 6.
- Dolmatov, D.O.; Zhvyrblya, V.Y. Optimal Design of Sparse Matrix Phased Array Using Simulated Annealing for Volumetric Ultrasonic Imaging with Total Focusing Method. Sensors 2024, 24, 1856. https://doi.org/10.3390/s24061856.
- 7.
- Schulmeyer, P.; Weihnacht, M.; Schmidt, H. A Dual-Mode Surface Acoustic Wave Delay Line for the Detection of Ice on 64°-Rotated Y-Cut Lithium Niobate. Sensors 2024, 24, 2292. https://doi.org/10.3390/s24072292.
- 8.
- Huang, J.; Chen, P.; Li, R.; Fu, K.; Wang, Y.; Duan, J.; Li, Z. Systematic Evaluation of Ultrasonic In-Line Inspection Techniques for Oil and Gas Pipeline Defects Based on Bibliometric Analysis. Sensors 2024, 24, 2699. https://doi.org/10.3390/s24092699.
- 9.
- Zeng, Z.; Wu, J.; Zheng, M.; Ma, H. Rail Flaw Detection via Kolmogorov Entropy of Chaotic Oscillator Based on Ultrasonic Guided Waves. Sensors 2024, 24, 2730. https://doi.org/10.3390/s24092730.
- 10.
- Adams, M.; Huijer, A.; Kassapoglou, C.; Vaders, J.A.A.; Pahlavan, L. In Situ Non-Destructive Stiffness Assessment of Fiber Reinforced Composite Plates Using Ultrasonic Guided Waves. Sensors 2024, 24, 2747. https://doi.org/10.3390/s24092747.
- 11.
- Malashin, I.; Tynchenko, V.; Martysyuk, D.; Shchipakov, N.; Krysko, N.; Degtyarev, M.; Nelyub, V.; Gantimurov, A.; Borodulin, A.; Galinovsky, A. Assessment of Anisotropic Acoustic Properties in Additively Manufactured Materials: Experimental, Computational, and Deep Learning Approaches. Sensors 2024, 24, 4488. https://doi.org/10.3390/s24144488.
- 12.
- Luo, J.; Jiang, S.; Zeng, Y.; Lai, C. Three-Dimensional Reconstruction and Visualization of Underwater Bridge Piers Using Sonar Imaging. Sensors 2024, 24, 4732. https://doi.org/10.3390/s24144732.
- 13.
- Zhu, X.; Chen, H.; Wu, Z.; Yang, S.; Li, X.; Li, T. An Experimental Study of the Acoustic Signal Characteristics of Locked-Segment Damage Evolution in a Landslide Model. Sensors 2024, 24, 4947. https://doi.org/10.3390/s24154947.
- 14.
- Tumšys, O.; Draudvilienė, L.; Žukauskas, E. Detailed Determination of Delamination Parameters in a Multilayer Structure Using Asymmetric Lamb Wave Mode. Sensors 2025, 25, 539. https://doi.org/10.3390/s25020539.
- 15.
- Turov, A.T.; Konstantinov, Y.A.; Totmina, E.E.; Votinova, A.G.; Masich, G.F.; Korobko, D.A.; Fotiadi, A.A. Registration of Sounds Emitted by the Madagascar Hissing Cockroach Using a Distributed Acoustic Sensor. Sensors 2025, 25, 2101. https://doi.org/10.3390/s25072101.
- 16.
- Moreh, F.; Hasan, Y.; Hussain, B.Z.; Ammar, M.; Wuttke, F.; Tomforde, S. MicrocrackAttentionNext: Advancing Microcrack Detection in Wave Field Analysis Using Deep Neural Networks Through Feature Visualization. Sensors 2025, 25, 2107. https://doi.org/10.3390/s25072107.
- 17.
- Ma, Y.; Hu, L.; Dong, Y.; Chen, L.; Liu, G. Bottom Plate Damage Localization Method for Storage Tanks Based on Bottom Plate-Wall Plate Synergy. Sensors 2025, 25, 2515. https://doi.org/10.3390/s25082515.
References
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Barzdenas, V.; Vasjanov, A. A method of optimizing characteristic impedance compensation using cut-outs in high-density pcb designs. Sensors 2022, 22, 964. [Google Scholar] [CrossRef] [PubMed]
- Krautkrämer, J.; Krautkrämer, H. Ultrasonic Testing of Materials, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Gu, A.; Liu, Z.; Pan, R.; Xu, B. Damage Identification in Concrete Using Instantaneous Dominant Frequency of Acoustic Emission Signals. Buildings 2024, 14, 3784. [Google Scholar] [CrossRef]
- Shah, J.K.; Wang, H.; El-Hawwat, S. Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing. Earthq. Eng. Eng. Vib. 2024, 23, 319–329. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT & E Int. 2006, 39, 525–541. [Google Scholar]
- Cantero-Chinchilla, S.; Wilcox, P.D.; Croxford, A.J. Deep learning in automated ultrasonic NDE—Developments, axioms and opportunities. NDT & E Int. 2022, 131, 102703. [Google Scholar]
- Moreh, F.; Lyu, H.; Rizvi, Z.H.; Wuttke, F. Deep neural networks for crack detection inside structures. Sci. Rep. 2024, 14, 4439. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, J.; Chen, J.; Zhang, W.; Yang, X.; Ma, H. Quantitative detection of pipeline cracks based on ultrasonic guided waves and convolutional neural network. Sensors 2024, 24, 1204. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Jack, D.A.; Ravindranath, P.K.; Fleck, T.J. Nondestructive quantification of internal raster path for additively manufactured components via ultrasonic testing. Sci. Rep. 2024, 14, 11416. [Google Scholar] [CrossRef] [PubMed]
- Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; Uris, A.; Rubio, C.; Minin, O.V.; Minin, I.V. Cylindrical 3D printed configurable ultrasonic lens for subwavelength focusing enhancement. Sci. Rep. 2020, 10, 20279. [Google Scholar] [CrossRef] [PubMed]
- Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; Uris, A.; Rubio, C. Tunable acoustic hooks from Janus cylinder. Results Phys. 2021, 24, 104134. [Google Scholar] [CrossRef]
- Heifetz, A.; Kong, J.A.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; Rubio, C. Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing. Sensors 2025, 25, 3271. https://doi.org/10.3390/s25113271
Castiñeira-Ibáñez S, Tarrazó-Serrano D, Rubio C. Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing. Sensors. 2025; 25(11):3271. https://doi.org/10.3390/s25113271
Chicago/Turabian StyleCastiñeira-Ibáñez, Sergio, Daniel Tarrazó-Serrano, and Constanza Rubio. 2025. "Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing" Sensors 25, no. 11: 3271. https://doi.org/10.3390/s25113271
APA StyleCastiñeira-Ibáñez, S., Tarrazó-Serrano, D., & Rubio, C. (2025). Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing. Sensors, 25(11), 3271. https://doi.org/10.3390/s25113271